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Introduction

• Turbulence in stirred vessels: a historical perspective.
• Prediction methods and large eddy simulation models.
• Examples:

– Straight blade and pitched blade turbines.
– Hydrofoil impeller systems. 
– Glass lined vessel example.

• Turbulence modeling: a projection for the future.
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Vortices behind Rushton turbine blades
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1980’s view of stirred tank flow fields

• Relatively simple flow fields, with superimposed random 
turbulence. Vortices behind the impeller blades.

Joshi, Pandit, Sharma. Chem. Eng. Sci. Vol. 
37, No. 6, pp. 813-844, 1982.

Warmoeskerken, 1984.
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Early 1990’s

• Asymmetric, unstable flow fields 
observed.

• Multimodal velocity histograms.
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Solids distribution and CFD flow fields - 1994

Bakker A., Fasano J.B., Myers K.J. (1994) Effects of Flow Pattern on the Solids Distribution in a Stirred 
Tank. 8th European Conference on Mixing, September 21-23, 1994, Cambr idge, U.K. IChemE 
Symposium Ser ies No. 136, ISBN 0 85295 329 1, page 1-8. 



7

Issues

• Local velocity data histograms may be multimodal. 
• In single-phase blending systems:

– Blend time experiments are poorly reproducible.
– Lots of scatter in literature data.

• In dilute multiphase systems:
– Gas holdup distribution may be asymmetric and 

oscillating. 
– Solids can be swept from one side of the vessel to the 

other in a relatively slow oscillating pattern. 
• Need a better description of the hydrodynamics to 

understand these issues.
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Digital particle image velocimetry (DPIV)

• First usable commercial systems came on the market in the 
mid 1990s.

• Allows instantaneous measurement of full 2-D flow fields.
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PBT system – velocity vectors and vorticity - 1
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PBT system – velocity vectors and vorticity - 2
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Time series of spatially averaged vorticity
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Period = 42 seconds = 42 impeller revolutions
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Spectral analysis – PBT system
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DPIV analysis conclusions

• Visually observed asymmetric 
flow patterns were confirmed.

• Long time scale oscillations 
were found, typically on the 
order of tens to hundreds of 
impeller revolutions.

• Importantly: the oscillations 
have time scales longer than 
the blend time!

• What does this mean for the 
proper choice of turbulence 
modeling method?
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Turbulence modeling objective

• The objective of turbulence modeling is to develop 
equations that will predict the time averaged velocity, 
pressure, and  temperature fields without calculating the 
complete turbulent flow pattern as a function of time.
– This saves us a lot of work!
– Most of the time it is all we need to know.
– We may also calculate other statistical properties, such as RMS 

values.

• Important to understand: the time averaged flow pattern is a 
statistical property of the flow. 
– It is not an existing flow pattern!
– The flow never actually looks that way!!
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Experimental Snapshot

Example: flow around a cylinder at Re=1E4

• The figures show:

– An experimental snapshot.

– Streamlines for time averaged 
flow field. Note the difference 
between the time averaged and 
the instantaneous flow field.

– Effective viscosity used to predict 
time averaged flow field.

Effective ViscosityStreamlines
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Prediction methods

l h = l/Re3/4

Direct numerical simulation (DNS) 

Large eddy simulation (LES)

Reynolds averaged Navier-Stokes equations (RANS)
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Kolmogorov energy spectrum

• Energy cascade, from large
scale to small scale.

• E is energy contained in 
eddies of wavelength l .

• Length scales:
– Largest eddies. Integral 

length scale (k3/2/e). 
– Length scales at which 

turbulence is isotropic. 
Taylor microscale 
(15nu’2/e)1/2.

– Smallest eddies. 
Kolmogorov length scale 
(n3/e)1/4. These eddies have 
a velocity scale (n.e)1/4 and a 
time scale (n/e)1/2.

2 3

2 2

2

is theenergy dissipation rate(m /s )

is the turbulent kinetic energy (m /s )

is thekinematic viscosity (m /s)

k

e

n

Kolmogorov 
scale

Integral 
scale

Taylor scale

Wavenumber

Log E

Energy-
containing 

eddies

Iner tial 
subrange

Dissipating 
eddies
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Direct numerical simulation (DNS)

• Navier-Stokes equations are solved on a fine grid using a 
small time-step. Goal is to capture all the turbulence scales. 

• Result is accurate, 3D, transient behavior.
• Great idea for simple flows, but computationally intensive.
• The overall cost, including time step, of the computational 

effort is ~ Ret
3.

• Not suited to industrial applications with CPU resources 
available today.



19

RANS turbulence models

• Reynolds averaged Navier-Stokes equations.
• Many flavors exist, such as:

– Mixing length model, Spalart-Allmaras model, standard k-e model, 
k-e RNG model, realizable k-e model, k-w model.

– Isotropic turbulence effects modeled through effective 
viscosity:

• meff is a scalar.
– RSM: 5-equation (2D) or 7-equation (3D) model:

• non-isotropic turbulence effects makes this suitable 
for highly swirling flows.
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Large eddy simulation (LES)

• LES is midway between DNS and RANS in terms of rigor 
and computational requirement.

• Spectrum of turbulent eddies in the Navier-Stokes equations 
is filtered:
– The filter is a function of the grid size.
– small eddies are removed, and modeled using a subgrid-scale (SGS) 

model.
– large eddies are retained, and solved for directly using a transient 

calculation.

• LES models in FLUENT are: RNG-Smagorinsky, 
Smagorinsky-Lilly, dynamic Smagorinsky, WALE, dynamic 
subgrid kinetic energy transport model.
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Required mesh resolution

• Suppose you want to resolve 80% of TKE.
• Then, we need to resolve the eddies whose sizes are larger 

than roughly half the size of the integral length scale (    ).
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• The central-differencing scheme has much lower numerical 
diffusion than high-order upwind schemes.

Taylor’s inviscid vortex flow –
2-D periodic array of vortices Evolution of total kinetic energy

Central differencing

Second-order upwind

Numerics - spatial discretization



23

Numerics: CD vs. QUICK Scheme

Central-differencing

QUICK

Separation and reattachment points 
predicted by FLUENT and others

1.701.23Breuer et al. LES

2.401.26FLUENT (LES + QUICK)

1.781.18FLUENT (LES + CD)

1.611.04Exp. (Martinuzzi and 
Tropea (1993)

XRXF

Time-averaged streamlines on the 
mid-plane

xF xR
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Stirred tank modeling

• The sliding mesh model was used to set up the transient 
motions of the impeller in the tank.

• Two turbulence model approaches were evaluated:
– Reynolds-Averaged Navier-Stokes turbulence model, 

i.e., k-e style and Reynolds Stress Models.
– Large Eddy Simulation or LES.

• The following impeller systems were modeled:
– Hydrofoil impeller (HE-3).
– Pitched blade turbine (PBT).
– Multiple hydrofoil system (A310).
– Rushton turbine (RT).
– Glass lined impeller system (RCI).
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Hydrofoil Impeller (HE-3)

• Flat bottom vessel with four 
baffles:

– T=0.292m

– Z/T=1

– Water
• HE-3:

– Three blades
– D/T=0.39

– C/T=0.33

– 60 RPM
– Reynolds ~ 1.3E4

(m/s)

Reference:  Myers K.J., Ward R.W., Bakker A. 
(1997) A Digital Particle Image Velocimetry 
Investigation of Flow Field Instabilities of 
Axial Flow Impellers, Journal of Fluids 
Engineering, Vol. 119, No. 3, page 623-632.

Experimental PIV data measured at Chemineer Inc.
Animation has approximately one snapshot every 

five revolutions. Plays approximately 12 times 
faster than real time.
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Stirred Tank Models - LES Grid Size

• Grid size used was on the order of 800k cells.
• This corresponded to an average grid size of 2E-3m.
• From RANS simulations it was determined that:

– Integral length scale (k3/2/e) ~ 10mm

– Taylor length scale (15nk/e)0.5 ~ 1.3mm

– Kolmogorov scale (n3/e)1/4 ~ 0.06 mm.

– E(k) is energy contained in eddies for 
given wavelength.

– Modeling ~85% of TKE.

Kolmogorov 
scale

Integral 
scale

Taylor scale

Wavenumber

Log E
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Time Dependent Velocity Magnitude

(m/s)

2-D Fix

3-D MRF
3-D LES (14.5 revs.)
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Iso-Surface of Vorticity 
Magnitude (15 s-1)

Velocity on Vorticity Iso-Surfaces

(m/s)

15.5 revs.

Iso-Surface of Vorticity 
Magnitude (30 s-1)

Vorticity is: ÑxV
Shear rate is: ÑV
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Velocity on Vorticity Iso-Surfaces

(m/s)

Iso-Surface of Vorticity Magnitude (5 s-1)
3.9 revs.
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Flow at the surface

HE-3 “ oilflow”  lines at liquid 
surface (8.8 revolutions)

(m/s)

“ Oilflow”  lines are pathlines constrained to 
the surface from which they are released.



HE-3 “ oilflow”  lines at liquid surface (12.3 revolutions)

(m/s)

(m/s)



HE-3 “ oilflow”  at vessel wall (18 revolutions)

(m/s)
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Pitched Blade Turbine

• Flat bottom vessel with four baffles:

– T=0.292m

– Z/T=1
• Pitched-blade turbine (PBT):

– Four blades at 45°
– D/T=0.35

– W/D=0.2

– C/T=0.46
– 60 RPM

• Water

• Reynolds number ~ 1E4.
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Time Series of Axial Velocity - 1

(a) x = 0.185m y = -0.04m, z = -0.04m (below impeller)

(b) x = 0.185m y = 0.04m z = 0.04m (below impeller)

PBT from 168.13306 (2500 time steps) to 178.12756s 

(3500 time steps) after start-up from a zero-velocity field.
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Time Series of Axial Velocity - 2 

(c) x=0.25m y=0.05m z=0.05m (vessel bottom)

(d) x=0.05m y=0.05m z=0.05m (liquid surface)
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Rushton Turbine Model

• Flat-bottom tank with four flat baffles: 
– T=0.2 m
– Z/T=1

• Impeller:
– Six blades 
– D/T=1/3
– W/D=0.2
– C/T=1/3
– 290 RPM

• Water.
• Reynolds number ~ 2E4. 

2-D simulation
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Rushton turbine - axial velocity

Iso-surface of axial velocity of 0.1m/s. The velocity is 
directed upwards in the regions enclosed by the iso-
surface. The surface is colored by strain rate on a scale 
of 0 to 100 1/s.
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Rushton Turbine - Trailing Vortices 

Iso-Surface of Vorticity Magnitude (550 and 80 s-1)

Colored by velocity magnitude
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Example: multiple hydrofoil impellers

• Vessel diameter T=0.232 m.
• Vessel height H/T = 4.1.
• Impeller diameter D/T = 0.41.
• Center-to-center distance 

between impellers is 1.02T.
• Liquid is water.
• Impeller speed is 300 RPM.
• Impeller Re = 4.7E4.
• Solution initialized with MRF.
• Continued for 118 revolutions 

with sliding mesh, LES-RNG 
subgrid model, and central 
differencing for momentum.

• Time step of 5 ms; 40 steps/rev.

A310
Po = 0.3



46

Multiple A310 system

MRF with k-eeee
Turbulent viscosity 

ratio ~ 157

LES. Smagorinsky-RNG
Subgrid viscosity ratio ~ 10

Velocity 
Magnitude 

(m/s)
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Multiple A310 system
Velocity 

Magnitude 
(m/s)
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Multiple A310 system
Velocity 

Magnitude 
(m/s)
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Glass lined equipment

• Glass lined equipment is 
characterized by the fact that all 
angles have to be rounded to 
prevent cracking of the glass 
coat.

• Vessels are typically equipped 
with either a classic retreat curve 
impeller or a combination of a 
radial flow impeller on the bottom 
and an axial flow impeller on the 
top.

• Glass lined vessels usually have 
one baffle and a diptube, which 
can have instrumentation.

• 8 m³ vessel at 5.8 m³ fill level.
• 180 RPM with water. Re=3E6.
• RCI at D/T=0.49.
• Fin baffle and diptube.
• LES. Smagorinsky-RNG subgrid 

model.
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Retreat curve 
impeller

Fin baffle

Diptube

Liquid surface

Diptube suspended 
from here

Baffle suspended 
from here
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Flow field at liquid surface

Vortex precesses around shaft approximately 
once per 40 revolutions.

(m/s)
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Flow field behind baffle

• Flow field visualized by means of 
“oilflow” lines.

• Oilflow lines are trajectories of 
flow following particles that are 
constrained to the surface of 
which they are released, in this 
case the liquid surface.

• The animation covers 8.4s real 
time, which corresponds to ~25 
impeller revolutions.

(m/s)
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Velocity magnitude at plane through baffle

(m/s)

Animation covers ~ 25 revs.
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Stirred tank modeling options - 2004

Daily design. General flow 
fields. How many impellers 
are needed. Instructional. 

Impeller design. When 
velocity data is not available.

Impeller-baffle interaction. 
Time dependence.

Research. Large scale turbulence 
and unsteady structures.

Hypothetical.
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Turbulence modeling for different users

• Researchers, analysts.
• FLUENT:

• Designers.
• FloWizard:
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Designers
~1 CPU Hour

Availability for different user categories

Grid cells

Year

2011

2018

2026

2004

Researchers
~1000 CPU Hours

Analysts
~50 CPU Hours

3-D MRF/Snapshot
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Summary

• LES has potential benefit for engineering applications, and 
is within reach computationally.

• However, steady state models models are much faster 
computationally, and still have their place.

• There will be a progression over time, with researchers, 
analysts, and designers adopting different turbulence 
modeling methods with intervals spanning ~15 years.


