Lecture 17 - Eulerian-Granular Model

Applied Computational Fluid Dynamics

Instructor: André Bakker
Contents

• Overview.
• Description of granular flow.
• Momentum equation and constitutive laws.
• Interphase exchange models.
• Granular temperature equation.
• Solution algorithms for multiphase flows.
• Examples.
Overview

• The fluid phase must be assigned as the primary phase.
• Multiple solid phases can be used to represent size distribution.
• Can calculate granular temperature (solids fluctuating energy) for each solid phase.
• Calculates a solids pressure field for each solid phase.
 – All phases share fluid pressure field.
 – Solids pressure controls the solids packing limit.
Granular flow regimes

<table>
<thead>
<tr>
<th>Elastic Regime</th>
<th>Plastic Regime</th>
<th>Viscous Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagnant</td>
<td>Slow flow</td>
<td>Rapid flow</td>
</tr>
<tr>
<td>Stress is strain dependent</td>
<td>Strain rate independent</td>
<td>Strain rate dependent</td>
</tr>
<tr>
<td>Elasticity</td>
<td>Soil mechanics</td>
<td>Kinetic theory</td>
</tr>
</tbody>
</table>
Kinetic theory of granular flow

Fluid-Particle System

Kinetic Transport

Collisional Transport
Granular multiphase model: description

- Application of the kinetic theory of granular flow
 - Velocity fluctuation of solids is much smaller than their mean velocity.
 - Dissipation of fluctuating energy due to inelastic deformation.
 - Dissipation also due to friction of particles with the fluid.
Granular multiphase model: description (2)

- Particle velocity is decomposed into a mean \bar{C} local velocity and a superimposed fluctuating random velocity \bar{u}_s.
- A “granular” temperature is associated with the random fluctuation velocity:

$$\frac{3}{2} \theta = \frac{1}{2} \bar{C} \cdot \bar{C}$$
Gas molecules and particle differences

- Solid particles are a few orders of magnitude larger.
- Velocity fluctuations of solids are much smaller than their mean velocity.
- The kinetic part of solids fluctuation is anisotropic.
- Velocity fluctuations of solids dissipates into heat rather fast as a result of inter particle collision.
- Granular temperature is a byproduct of flow.
Analogy to kinetic theory of gases

- Velocity distribution function
- Pair distribution function

Free streaming

Collision

Collisions are brief and momentarily. No interstitial fluid effect.
Granular multiphase model: description

- Several transport mechanisms for a quantity $Ψ$ within the particle phase:
 - Kinetic transport during free flight between collision
 Requires velocity distribution function f^1.
 - Collisional transport during collisions
 Requires pair distribution function f^2.

- Pair distribution function is approximated by taking into account the radial distribution function $g_o(\mathbf{r}, \sigma)$ into the relation between and f^1 and f^2.
Continuity and momentum equations

- Applying Enskog’s kinetic theory for dense gases gives for:
 - Continuity equation for the granular phase.
 \[
 \frac{\partial}{\partial t} (\alpha_s \rho_s \vec{u}_s) + \nabla \cdot (\alpha_s \rho_s \vec{u}_s \vec{u}_s) = \dot{m}_{fs}
 \]
 - Granular phase momentum equation.
 \[
 \frac{\partial}{\partial t} (\alpha_s \rho_s \vec{u}_s \vec{u}_s) + \nabla \cdot (\alpha_s \rho_s \vec{u}_s \vec{u}_s \vec{u}_s) = -\alpha_s \nabla p_f + \nabla \cdot \vec{\tau}_s + \sum_{s=1}^{n} (\vec{R}_{fs} + \dot{m}_{fs} \vec{u}_s \vec{u}_s) + \vec{F}_s
 \]
Constitutive equations

- Constitutive equations needed to account for interphase and intraphase interaction:
 - Solids stress \(\nabla \cdot \tau_s \) Accounts for interaction within solid phase. Derived from granular kinetic theory

\[
\tau_s = -P_s I + 2\alpha_s \mu_s \bar{S} + \alpha_s (\lambda_s - \frac{2}{3} \mu_s) \nabla \cdot \bar{u}_s I
\]

where,
\[
\bar{S} = \frac{1}{2} \left(\nabla \bar{u}_s + (\nabla \bar{u}_s)^T \right)
\]
Strain rate
\[
P_s
\]
Solids Pressure
\[
g_o
\]
Radial distribution function
\[
\lambda_s, \mu_s
\]
Solids bulk and shear viscosity
Constitutive equations: solids pressure

- Pressure exerted on the containing wall due to the presence of particles.
- Measure of the momentum transfer due to streaming motion of the particles:

\[P_s = \alpha_s \rho_s \theta_s (\omega + 2(1 + e_s)\alpha_s g_{os}) \]

 - Gidaspow and Syamlal models: \(\omega = 1 \)

 - Sinclair model: \(\omega = (1 + \frac{d_s}{6\alpha_s D\sqrt{2}}) \)
The radial distribution function $g_0(\alpha_s)$ is a correction factor that modifies the probability of collision close to packing.

Expressions for $g_0(\alpha_s)$:

Ding and Gidaspow, Sinclair.

$$g_0(\alpha_s) = \left(1 - \left(\frac{\alpha_s}{\alpha_{s,\text{max}}}\right)^{\frac{1}{3}}\right)^{-1}, \alpha_{s,\text{max}} = 0.65$$

Syamlal et al.

$$g_0(\alpha_s) = \frac{1}{1-\alpha_s} + \frac{3\alpha_s}{2(1-\alpha_s)^2}$$
Constitutive equations: solids viscosity

- The solids viscosity:
 - Shear viscosity arises due translational (kinetic) motion and collisional interaction of particles:
 \[\mu_s = \mu_{s,coll} + \mu_{s,kin} \quad \eta = (1 + \alpha_s) / 2 \]
 - Collisional part:
 - Gidaspow and Syamlal models:
 \[\mu_{s,coll} = \frac{8}{5} \alpha_s \rho_s d_s g \eta \left(\frac{\theta_s}{\pi} \right)^{1/2} \]
 - Sinclair model:
 \[\mu_{s,col} = \frac{5d_s \rho_s (\theta_s \pi)^{1/2}}{96\alpha_s} \left[\frac{8\alpha_s}{5(2 - \eta)} \left[1 + \frac{8}{5} \eta(3\eta - 2) \alpha_s g \right] + \frac{768}{25\pi} \eta \alpha_s^2 g \right] \]
Constitutive equations: solids viscosity

- Kinetic part:
 - Syamlal model:
 \[
 \mu_{s,\text{kin}} = \frac{\alpha_s d_s \rho_s (\theta_s \pi)^{1/2}}{12(2-\eta)} \left[1 + \frac{8}{5} \eta(3\eta - 2) \alpha_s g_{os} \right]
 \]
 - Gidaspow model:
 \[
 \mu_{s,\text{kin}} = \frac{5d_s \rho_s (\theta_s \pi)^{1/2}}{96\eta g_{os}} \left[1 + \frac{8}{5} g_{os} \alpha_s \eta \right]
 \]
 - Sinclair model:
 \[
 \mu_{s,\text{kin}} = \frac{5d_s \rho_s (\theta_s \pi)^{1/2}}{96\alpha_s \eta(2-\eta) g_{os}} \left[1 + \frac{8}{5} \eta(3\eta - 2) \alpha_s g_{os} \right]
 \]
Constitutive equations: bulk viscosity

- Bulk viscosity accounts for resistance of solid body to dilatation:

$$\lambda_s = \frac{4}{3} \alpha_s \rho_s d_s g_{os} (1 + e_s) \left(\frac{\theta_s}{\pi} \right)^{\frac{1}{2}}$$

- α_s volume fraction of solid.
- e_s coefficient of restitution.
- d_s particle diameter.
Plastic regime: frictional viscosity

- In the limit of maximum packing the granular flow regime becomes incompressible. The solid pressure decouples from the volume fraction.
- In frictional flow, the particles are in enduring contact and momentum transfer is through friction. The stresses are determined from soil mechanics (Schaeffer, 1987).
- The frictional viscosity is:
 \[\mu_{s,\text{frict}} = \frac{P_s \sin \phi}{2\sqrt{I_2}} \]
- The effective viscosity in the granular phase is determined from the maximum of the frictional and shear viscosities:
 \[\mu_s = \max \{ \mu_{s,\text{coll}} + \mu_{s,\text{kin}}, \mu_{s,\text{frict}} \} \]
Momentum equation: interphase forces

- Interaction between phases.
 \[\sum_{s=1}^{n} (\vec{R}_{fs} + \dot{m}_{fs} \vec{u}_{fs}) = 0 \]

- Formulation is based on forces on a single particle corrected for effects such as concentration, clustering particle shape and mass transfer effects. The sum of all forces vanishes.
 - Drag: caused by relative motion between phases; \(K_{fs} \) is the drag between fluid and solid; \(K_{ls} \) is the drag between particles
 \[\sum_{l=1}^{n} (K_{ls} (\vec{u}_l - \vec{u}_s)) + K_{fs} (\vec{u}_f - \vec{u}_s) = 0 \]

 General form for the drag term:
 \[K_{fs} = \alpha_s \rho_s \frac{f_{drag}}{\tau_{fs}} \]

 With particle relaxation time:
 \[\tau_{fs} = \frac{\rho_s d_s^2}{18 \mu_f} \]
Momentum: interphase exchange models

- Fluid-solid momentum interaction, expressions for f_{drag}.
 - Di Felice (1994).
 - Wen and Yu (1966).
- Drag based on Richardson and Zaki (1954) and/or Ergun (1952).
 - use the one that correctly predicts the terminal velocity in dilute flow.
 - in bubbling beds ensure that the minimum fluidized velocity is correct.
 - It depends strongly on the particle diameter: correct diameter for non-spherical particles and/or to include clustering effects.
Comparison of drag laws

• A comparison of the fluid-solid momentum interaction, f_{drag}, for:
 – Relative Reynolds number of 1 and 1000.
 – Particle diameter 0.001 mm.
Particle-particle drag law

- Solid-solid momentum interaction.
 - Drag function derived from kinetic theory (Syamlal et al, 1993).

\[
K_{lm} = \frac{3(1 + e_{lm})(\frac{\pi}{2} + C_{lm} \frac{\pi^2}{8})\alpha_l \rho_l \alpha_m \rho_m (d_l + d_m)^2}{2\pi(\rho_l d_l^3 + \rho_m d_m^3)} \frac{g_{olm}}{|\bar{u}_l - \bar{u}_m|}
\]

\[
g_{olm} = \frac{1}{\alpha_f} + \frac{3d_m d_l}{\alpha_f^2 (d_l + d_m)} \sum_{k=1}^{M} \frac{\alpha_k}{d_k}
\]
Momentum: interphase exchange models

- Virtual mass effect: caused by relative acceleration between phases Drew and Lahey (1990).

\[K_{vm,fs} = C_{vm} \alpha_s \rho_f \left(\frac{\partial \tilde{u}_f}{\partial t} + \tilde{u}_f \cdot \nabla \tilde{u}_f \right) - \left(\frac{\partial \tilde{u}_s}{\partial t} + \tilde{u}_s \cdot \nabla \tilde{u}_s \right) \]

\[K_{k,fs} = C_L \alpha_s \rho_f \left(\tilde{u}_f - \tilde{u}_s \right) \times \left(\nabla \times \tilde{u}_f \right) \]

- Other interphase forces are: Basset Force, Magnus Force, Thermophoretic Force, Density Gradient Force.
Granular multiphase model: mass transfer

- Unidirectional mass transfer: \dot{m}_{fs}

- Defines positive mass flow is specified constant rate of rate per unit volume from phase f to phase s,
 - \dot{m}_{fs} proportional to: $\dot{r}\alpha_f \rho_s$
 - particle shrinking or swelling.
 - e.g., rate of burning of particle.
 - Heat transfer modeling can be included via UDS.
Granular temperature equations

- Granular temperature. \(\theta = \frac{1}{3} \vec{C} \cdot \vec{C} \)

\[
\frac{3}{2} \left\{ \frac{\partial}{\partial t} (\alpha_s \rho_s \theta_s) + \nabla \cdot (\alpha_s \rho_s \vec{u}_s \theta_s) \right\} = \tau_s : \nabla \vec{u}_s + \ldots
\]

- Production term

- Diffusion term

- Dissipation term due to inelastic collisions

- Exchange terms
Constitutive equations: granular temperature

- Granular temperature for the solid phase is proportional to the kinetic energy of the random motion of the particles.

 $\bar{\tau}_s : \nabla \bar{u}_s$

 represents the generation of energy by the solids stress tensor.

- $\nabla \cdot (\kappa_{\theta s} \nabla \theta_s)$

 represents the diffusion of energy.

- $K_{\theta s}$

 Granular temperature conductivity.
Constitutive equations: granular temperature

- Granular temperature conductivity.
 - Syamlal:
 \[
 \kappa_{\theta} = \frac{15\alpha_s \rho_s d_s \sqrt{\theta_s \pi}}{4(41 - 33\eta)} \left[1 + \frac{12}{5} \alpha_s g_{os} \eta^2 (4\eta - 3) + \frac{16}{15\pi} (41 - 33\eta)\eta \alpha_s g_{os}\right]
 \]
 - Gidaspow:
 \[
 \kappa_{\theta} = \frac{75 \rho_s d_s \sqrt{\theta_s \pi}}{384\eta g_{os}} \left[1 + \frac{12}{5} \alpha_s g_{os} \eta \right]^2 + 2\alpha_s^2 \rho_s d_s (1 + e_s) g_{os} \sqrt{\frac{\theta_s}{\pi}}
 \]
 - Sinclair:
 \[
 \kappa_{\theta} = (\kappa_{\theta})_{syamlal} + \frac{25 \rho_s d_s \sqrt{\theta_s \pi}}{16\eta g_{os}} \omega \left[1 + \frac{12}{5} \eta^2 (4\eta - 3)\alpha_s g_{os} \right]
 \]
Constitutive equations: granular temperature

- γ_{θ_s} represents the dissipation of energy due to inelastic collisions.
 - Gidaspow: $\gamma_{\theta_s} = 3(1-e_s^2)\alpha_s^2 \rho_s g_{os} \theta_s \left[\frac{4}{\pi} \sqrt{\frac{\theta}{\pi}} - \nabla \bar{u}_s \right]

 - Syamlal and Sinclair: $\gamma_{\theta_s} = \frac{12(1-e_s)g_{os}}{d_s \sqrt{\pi}} \rho_s \alpha_s \theta_s^{3/2}$ Lun et al (1984)

- Here ϕ_{lm} represents the energy exchange among solid phases (UDS).
Constitutive equations: granular temperature

- ϕ_{fs} represents the energy exchange between the fluid and the solid phase.
 - Laminar flows: $\phi_{fs} = -3K_{fs}\theta_s$

 - Dispersed turbulent flows:
 - Sinclair: $\phi_{fs} = K_{fs}(\sqrt{2k_f}\sqrt{3\theta} - 2k_f)$
 - Other models: $\phi_{fs} = K_{fs}(2k_f - \langle u_{pi}', u_{fi}' \rangle)$
Test case for Eulerian granular model

- Contours of solid stream function and solid volume fraction when solving with Eulerian-Eulerian model.

- Contours of solid stream function and solid volume fraction when solving with Eulerian-Granular model.
Solution guidelines

- All multiphase calculations:
 - Start with a single-phase calculation to establish broad flow patterns.

- Eulerian multiphase calculations:
 - Copy primary phase velocities to secondary phases.
 - Patch secondary volume fraction(s) as an initial condition.
 - For a single outflow, use OUTLET rather than PRESSURE-INLET; for multiple outflow boundaries, must use PRESSURE-INLET.
 - For circulating fluidized beds, avoid symmetry planes (they promote unphysical cluster formation).
 - Set the “false time step for underrelaxation” to 0.001.
 - Set normalizing density equal to physical density.
 - Compute a transient solution.
Summary

• The Eulerian-granular multiphase model has been described in the section.
• Separate flow fields for each phase are solved and the interaction between the phases modeled through drag and other terms.
• The Eulerian-granular multiphase model is applicable to all particle relaxation time scales and includes heat and mass exchange between phases.
• Several kinetic theory formulations available:
 • Gidaspow: good for dense fluidized bed applications.
 • Syamlal: good for a wide range of applications.
 • Sinclair: good for dilute and dense pneumatic transport lines and risers.