Blend Times in Stirred Tanks

Reacting Flows - Lecture 9

Instructor: André Bakker

1

http://www.bakker.org © André Bakker (2006)

Evaluation of mixing performance

- Methods to evaluate mixing performance:
 - Characterization of homogeneity.
 - Blending time.
- General methods to characterize homogeneity:
 - Visual uniformity.
 - Quantitative change in local concentration as a function of time.
 - Review instantaneous statistics about the spatial distribution of the species.
 - Average concentration
 - Minimum and maximum
 - Standard deviation in the concentration.
 - Coefficient of variation CoV = standard deviation/average.

Visual uniformity

- Experimentally measure the time it takes to obtain visual uniformity.
- Can be done with acid-base additions and a pH indicator.
- Offers good comparisons between performance of different mixing systems.
- Not a suitable approach for CFD.

Visual uniformity example: glass mixing

- Glass exits the glass ovens with variations in temperature and material concentrations.
- As a result, when the glass hardens, there will be visual nonuniformities.
- So, glass needs to be mixed before it is used. Because of the highviscosity and temperature, special mixers are used,
- Optical quality of glass is still often determined visually.

Quantitative variation in a point

- Measuring the tracer concentration as a function of time c(t) in one or more points in the vessel, is a common experimental method.
- The mixing time is then the time it takes for the measured concentration c(t) to stay within a certain range of the final concentration c_∞.
- Advantage: easy to use in experiments.
- Disadvantage: uses only one or a few points in the vessel.
- Does not use all information present in a CFD simulation.

Blend time calculations with CFD

- Transport and mixing of a tracer:
 - Add tracer to the domain.
 - Mass fraction of tracer calculated and monitored as a function of time.
 - Determine blend time based on the mass-fraction field satisfying a pre-specified criterion.
- Flow field required can be steady, frozen unsteady or unsteady.
- Benefit of CFD:
 - The full concentration field is known.
 - Can use more data to determine blend time than what can be measured experimentally using probes.
- Main question: what should be the mixing criterion?

CFD analysis for blend time

		Physical Lab	CFD Lab
Addition of Tracer	Volume of Tracer	Controlled	Exact
	Delivery Time	finite	zero
	Location	variable	fixed
Concentration Measurement of Tracer	Conductivity	Yes	No
	Color	Yes	No
	Mass Fraction	inferred	Yes

- We will now:
 - Illustrate the blend time analysis using a 2-D Rushton turbine flow field example.
 - Tracer added and its transport and mixing calculated. Mass fractions are monitored as a function of time.
 - Blend time is calculated using different criteria.

Rushton Impeller - 50 RPM - 31.6I Vessel Velocity Vectors Colored By Velocity Magnitude (m/s)

Rushton Impeller - 50 RPM - 31.6l Vessel Contours of Mass fraction of water-liquid-tracer (Time=0.0000e+00) FLUENT 6.2 (axi, segregated, spe, rke, unsteady)

Measures of variation

- Variations in Y, the mass fraction of tracer, can be measured in several ways. For all measures, greater numbers indicate a greater variation with no upper bound.
- Coefficient of variation. Ratio between standard deviation σ_{Y} and the average $\langle Y \rangle$:

$$CoV = \frac{\sigma_Y}{\langle Y \rangle}$$

- Ratio between maximum and minimum mass fractions Y_{max}/Y_{min} .
- Largest deviation between extremes in the mass fraction and the average:

$$\Delta_{\max} = \max(Y_{\max} - \langle Y \rangle, \langle Y \rangle - Y_{\min})$$

Can also be normalized over < Y>.

Variation calculation example

- Mass fraction data:
 - Min-max anywhere: 0.0223-0.539
 - Min-max from probes: 0.0574-0.272
 - Average: 0.0943
 - Standard deviation: 0.0493
- Measures of variation:
 - Max/min = 0.539/0.0223 = 24.2 (anywhere)
 - Max/min = 0.272/0.0574 = 4.7 (from probes)
 - CoV = 0.0493/0.0943 = 0.52
 - $-\Delta_{max} = max(0.539-0.0943, 0.0943-0.0223) = 0.44$
 - $-\Delta_{max}/\langle Y \rangle = 0.44/0.0943 = 4.7$

Measures of uniformity - absolute

- There is a need to have an absolute measure of uniformity U that is ≤ 1 with 1 (or 100%) indicating perfect uniformity.
- Ratio between the minimum and maximum mass fractions.
 - Bounded between 0 and 1.

$$U_{\min/\max} = \frac{Y_{\min}}{Y_{\max}}$$

 $U_{CoV} = 1 - CoV$

- Based on coefficient of variance CoV:
 - Not bounded: can be less than 0.
- Based on largest deviation from the average:
 - Conceptually closer to common experimental techniques.
 - Not bounded: can be less than 0.

$$U_{\Delta} = 1 - \frac{\Delta_{\max}}{\langle Y \rangle}$$

Uniformity

Time (s) 15

<u>Uniformity</u>

- These measures of uniformity:
 - All indicate perfect uniformity at values of 1.
 - Are not all bounded between 0 and 1.
 - Do not take initial conditions into account.
- Generally, it is most useful to be able to predict the time it takes to reduce concentration variations by a certain amount.
- This is then done by scaling the largest deviation in mass fraction at time t by the largest deviation at time t=0.

$$U(t) = 1 - \frac{\Delta_{\max}(t)}{\Delta_{\max}(t=0)}$$

- E.g. for the example case:
 - − At *t*=0s, Y_{max} =1 and <*Y*>=0.0943 → Δ_{max} (*t*=0) = 0.906.
 - − At *t*=10s, $\Delta_{max}(10s) = 0.44 \rightarrow U(10s) = 0.51$.
- Data are often correlated in terms of number of impeller revolutions, at t=10s and 50RPM, there were 10*RPM/60=8.33 impeller revolutions.

Comparison between systems

- Let's compare two systems with:
 - The same flow field.
 - The same spatial distribution of species.
 - But different initial mass fractions of species.

Layer with $Y_{tracer} = 1$ on top of fluid with $Y_{tracer} = 0. < Y > = 0.094$.

Layer with Y_{tracer} =0.4 on top of fluid with Y_{tracer} =0.1. <Y>=0.13.

Compare two more systems

- Two systems with approximately the same average mass fraction of tracer <Y> ≅ 0.5.
- The initial distributions are very different: layered vs. blocky pattern.

Layer with $Y_{tracer} = 1$ on top of fluid with $Y_{tracer} = 0. < Y > = 0.497$.

Blocky pattern of fluid with $Y_{tracer}=0$. and fluid with $Y_{tracer}=1. < Y>=0.491$.

Time (s)

Compare all four systems

Initial Y	U	
Layer (0 to 1)	20.3	
Layer (0.1 to 0.4)	20.3	
Blocky Pattern	10.7	
Half-Half	26.1	

- Table shows number of impeller revolutions it takes to achieve 99% uniformity for all four systems using the two main criteria:
 - U based on reduction in initial variation.
 - U_{Δ} based on variation from the average.
- Conclusion: systems with good initial distributions mix faster.
- General recommendation: use U (reduction in initial variation) to correlate results or to compare with literature blend time correlations.

Continuous systems

- Methods so far are for batch systems.
- Do these methods work for continuous systems?
 - Requires some modification.
 - Looking at mass fraction extremes does not work, because these may be fixed by the inlet mass fractions.
- Various approaches used:
 - Compare batch blend time with average residence time of the material (RT = liquid volume divided by volumetric flow rate). If batch blend time is much smaller than RT, assume there is no mixing problem.
 - Perform particle tracking simulation, similar to shown for static mixers in previous lectures. Analyze residence time distributions.
 - Perform tracer mixing calculation.

Tracer mixing calculation

- Calculate continuous, steady state flow field.
- Initial mass fraction of tracer is zero everywhere.
- Perform transient calculation for tracer mixing, with non-zero mass fraction tracer at inlet.
- Monitor:
 - Average mass fraction in domain < Y>.
 - Mass fraction at outlet Y_{out}.
 - Optional: monitor CoV.
- Definition of perfectly mixed system: $Y_{out} = \langle Y \rangle$.
- Mixing time is then the time it takes for the ratio Y_{out}/<Y> to be within a specified tolerance of 1.
- Mixing time can be expressed in number of residence times: t/RT.

Compare two systems

- Rushton turbine flow field.
- Continuous system with two different injections:
 - Low velocity feed (0.01 m/s) distributed across liquid surface.
 - Affects flow in upper part of the vessel only.
 - High speed jet feed (9.6 m/s) entering through bottom shaft.
 - Because of the large momentum contained in the jet, it alters the flow field significantly.
- Outflow at center of bottom.
- Average residence time RT=30s, equivalent to 25 impeller revolutions. The RT is similar to the batch blend time.

Rushton Impeller - 50 RPM - 31.6l Vessel - Continuous flow - Surface Inlet Contours of Mass fraction of water-liquid-tracer (Time=0.0000e+00) FLUENT 6.2 (axi, segregated, spe, rke, unsteady)

Rushton Impeller - 50 RPM - 31.6l Vessel - Continuous flow - Shaft Inlet Contours of Mass fraction of water-liquid-tracer (Time=0.0000e+00) FLUENT 6.2 (axi, segregated, spe, rke, unsteady)

Comments

- The main assumption behind this approach is that the system will eventually reach a steady state where Y_{out}=<Y>.
 - Not all industrial systems may have a steady state operating condition which, in general, is an undesirable situation that would need to be addressed.
- CoV can still be used to compare uniformity of different systems under steady state operating conditions with multiple species.