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Overview

Welcome! 

• This document contains the lectures for the Computational Fluid 

Dynamics (ENGS 150) class that I taught at the Thayer School of 

Engineering at Dartmouth College from 2002-2006. 

• These lectures are provided – at no charge - for educational and 

training purposes only. 

• You are welcome to include parts of these lectures in your own 

lectures, courses, or trainings, provided that you include this 

reference:

Bakker A. (2008) Lectures on Applied Computational 

Fluid Dynamics. www.bakker.org.
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About the author

• I received my Doctorate in Applied Physics from Delft University of 

Technology in the Netherlands in 1992. In addition, I obtained an 

MBA in Technology Management from the University of Phoenix. 

From 1991 to 1998 I worked at Chemineer Inc., a leading 

manufacturer of fluid mixing equipment. In 1998 I joined Fluent 
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software. Since 2006 I have been with ANSYS, Inc.

• You can find me on the Web:

– LinkedIn: https://www.linkedin.com/in/andre-bakker-75384463

– ResearchGate: https://www.researchgate.net/profile/Andre_Bakker

– Personal web page: www.bakker.org

André Bakker
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Course materials

• This class uses the book An introduction to 

Computational Fluid Dynamics: The Finite 

Volume Method by Versteeg and 

Malalasekera, Longman Scientific & 

Technical. 

• It also uses the Multimedia Fluid Mechanics 

CD-ROM by Homsy et al., Cambridge 

University Press. 

• These lectures contain some materials from 

that book and the CD-ROM. 

• I therefore recommend that users of these 

lectures purchase those.

• Additional references used in these lectures 

are provided below.
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Additional recommended reading

• A classic: Album of Fluid Motion by Milton 

Van Dyke (1982) showcases photographs of 

many different flow fields. These lectures also 

include photographs from this book.

• Turbulent Flows by Stephen B. Pope (2000) 

provides a comprehensive, mathematical, 

overview of the theory of turbulent flows.
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Student Projects (1/3)

• Students completed projects of their choosing as part of this class 

using the CFD software package FLUENT. 

• These articles highlight some interesting student projects: 

– Bakker A. (2003) Ivy League CFD Simulations, Fluent Newsletter, 

Fall 2003, page 38-39.

– Bakker A. (2005) Having Fun While Studying CFD. Fluent 

Newsletter, Summer 2005, page 26-27.
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Lecture 1 - Introduction to CFD

Applied Computational Fluid Dynamics

André Bakker
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Fluid dynamics

• Fluid dynamics is the science of fluid motion.

• Fluid flow is commonly studied in one of three ways:

– Experimental fluid dynamics.

– Theoretical fluid dynamics.

– Numerically: computational fluid dynamics (CFD).

• During this course we will focus on obtaining the knowledge 

required to be able to solve practical fluid flow problems using 

CFD.

• Topics covered today include:

– A brief review of the history of fluid dynamics.

– An introductory overview of CFD.
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Antiquity

• Focus on waterworks: aqueducts, 

canals, harbors, bathhouses.

• One key figure was Archimedes -

Greece (287-212 BC). He initiated the 

fields of static mechanics, 

hydrostatics, and pycnometry (how to 

measure densities and volumes of 

objects).

• One of Archimedes’ inventions is the 

water screw, which can be used to lift 

and transport water and granular 

materials.

14Images: Homsy et al. [2] 
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Leonardo da Vinci - Italy (1452-1519)

• Leonardo set out to observe all 

natural phenomena in the visible 

world, recognizing their form and 

structure, and describing them 

pictorially exactly as they are.

• He planned and supervised canal and 

harbor works over a large part of 

middle Italy. In France he designed a 

canal that connected the Loire and 

Saone.

• His contributions to fluid mechanics 

are presented in a nine-part treatise 

(Del moto e misura dell’acqua) that 

covers the water surface, movement 

of water, water waves, eddies, falling 

water, free jets, interference of waves, 

and many other newly observed 

phenomena.
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Leonardo da Vinci “A Gigantic Explosion”
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Isaac Newton - England (1643-1727)

• One of the most important figures in 

science.

• Most well-known for his three laws of 

motion.

• His key contributions to fluid mechanics 

include:

– The second law: F=m.a.

– The concept of Newtonian viscosity in 

which stress and the rate of strain vary 

linearly.

– The reciprocity principle: the force applied 

upon a stationary object by a moving fluid 

is equal to the change in momentum of the 

fluid as it deflects around the front of the 

object.

– Relationship between the speed of waves 

at a liquid surface and the wavelength.

17Images: Homsy et al. [2] 
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• During this period, significant work was done trying to 

mathematically describe the motion of fluids.

• Daniel Bernoulli (1700-1782) derived Bernoulli’s equation.       

• Leonhard Euler (1707-1783) proposed the Euler equations, which 

describe conservation of momentum for an inviscid fluid, and 

conservation of mass. He also proposed the velocity potential 

theory. 

• Claude Louis Marie Henry Navier (1785-1836) and George Gabriel 

Stokes (1819-1903) introduced viscous transport into the Euler 

equations, which resulted in the Navier-Stokes equation. This 

forms the basis of modern day CFD.

• Other key figures were Jean Le Rond d’Alembert, Siméon-Denis 

Poisson, Joseph Louis Lagrange, Jean Louis Marie Poiseuille, 

John William Rayleigh, M. Maurice Couette, and Pierre Simon de 

Laplace.

18th and 19th century

1. Introduction to CFD



Osborne Reynolds - England (1842-1912)

• Reynolds was a prolific writer who 

published almost 70 papers during his 

lifetime on a wide variety of science 

and engineering related topics.

• He is most well-known for the 

Reynolds number, which is the ratio 

between inertial and viscous forces in 

a fluid. This governs the transition 

from laminar to turbulent flow.

• Reynolds’ apparatus consisted of a long glass pipe through which water 

could flow at different rates, controlled by a valve at the pipe exit. The state 

of the flow was visualized by a streak of dye injected at the entrance to the 

pipe. The flow rate was monitored by measuring the rate at which the free 

surface of the tank fell during draining. The immersion of the pipe in the 

tank provided temperature control due to the large thermal mass of the 

fluid.

19Image: Homsy et al. [2] 
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First part of the 20th century

• Much work was done on refining 

theories of boundary layers and 

turbulence.

• Ludwig Prandtl (1875-1953):  

boundary layer theory, the mixing 

length concept, compressible flows, 

the Prandtl numbers, and more.

• Theodore von Karman (1881-1963) 

analyzed what is now known as the 

von Karman vortex street. 

• Geoffrey Ingram Taylor (1886-1975):  

statistical theory of turbulence and the 

Taylor microscale.

• Andrey Nikolaevich Kolmogorov 

(1903-1987): the Kolmogorov scales 

and the universal energy spectrum.

• George Keith Batchelor (1920-2000): 

contributions to the theory of 

homogeneous turbulence.

1. Introduction to CFD
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Lewis Fry Richardson (1881-1953)

• In 1922, Lewis Fry Richardson [6] developed the first numerical 

weather prediction system.

– Division of space into grid cells and the finite difference 

approximations of Bjerknes's "primitive differential equations.” 

– His own attempt to calculate weather for a single eight-hour period 

took six weeks and ended in failure.

• His model's enormous calculation requirements led Richardson to 

propose a solution he called the “forecast-factory.”

– The "factory" would have filled a vast stadium with 64,000 people.

– Each one, armed with a mechanical calculator, would perform part of 

the calculation. 

– A leader in the center, using colored signal lights and telegraph 

communication, would coordinate the forecast.

1. Introduction to CFD
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1930s to 1950s

• Earliest numerical solution: for flow past a cylinder (1933).

• A.Thom, ‘The Flow Past Circular Cylinders at Low Speeds’, Proc. Royal 

Society, A141, pp. 651-666, London, 1933

• Kawaguti obtains a solution for flow around a cylinder, in 1953 by 

using a mechanical desk calculator, working 20 hours per week for 

18 months.

• M. Kawaguti, ‘Numerical Solution of the NS Equations for the Flow 

Around a Circular Cylinder at Reynolds Number 40’, Journal of Phy. Soc. 

Japan, vol. 8, pp. 747-757, 1953.

1. Introduction to CFD
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1960s and 1970s

• During the 1960s the theoretical division at Los Alamos contributed many 

numerical methods that are still in use today, such as the following methods:

– Particle-In-Cell (PIC).

– Marker-and-Cell (MAC).

– Vorticity-Streamfunction Methods.

– Arbitrary Lagrangian-Eulerian (ALE).

– k- turbulence model.

• During the 1970s a group working under D. Brian Spalding, at Imperial College, 

London, develop:

– Parabolic flow codes (GENMIX).

– Vorticity-Streamfunction based codes.

– The SIMPLE algorithm and the TEACH code.

– The form of the k- equations that are used today.

– Upwind differencing.

– ‘Eddy break-up’ and ‘presumed pdf’ combustion models.

• In 1980 Suhas V. Patankar publishes Numerical Heat Transfer and Fluid Flow, 

probably the most influential book on CFD to date.

1. Introduction to CFD



24

1980s and 1990s

• Previously, CFD was performed using academic, research and in-
house codes. When one wanted to perform a CFD calculation, one 
had to write a program.

• This is the period during which most commercial CFD codes 
originated that are available today:

– Fluent (UK and US).

– Fidap (US).

– Polyflow (Belgium).

– Phoenix (UK).

– Star CD (UK).

– Ansys/CFX (UK).

– Flow 3d (US).

– ESI/CFDRC (US).

– SCRYU (Japan).

– and more, see www.cfdreview.com.

1. Introduction to CFD
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What is computational fluid dynamics?

• Computational fluid dynamics (CFD) is the science of predicting 

fluid flow, heat transfer, mass transfer, chemical reactions, and 

related phenomena by solving the mathematical equations which 

govern these processes using a numerical process.

• The result of CFD analyses is relevant engineering data used in:

– Conceptual studies of new designs.

– Detailed product development.

– Troubleshooting.

– Redesign.

• CFD analysis complements testing and experimentation.

– Reduces the total effort required in the laboratory.

1. Introduction to CFD
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Domain for bottle filling 

problem.

Filling 

Nozzle

Bottle

CFD - how it works (1/2)

• Analysis begins with a mathematical 

model of a physical problem.

• Conservation of matter, momentum, 

and energy must be satisfied 

throughout the region of interest.

• Fluid properties are modeled 

empirically.

• Simplifying assumptions are made in 

order to make the problem tractable 

(e.g., steady-state, incompressible, 

inviscid, two-dimensional).

• Provide appropriate initial and 

boundary conditions for the problem.

1. Introduction to CFD
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Mesh for bottle filling 

problem.

CFD - how it works (2/2)

• CFD applies numerical methods (called 

discretization) to develop approximations of 

the governing equations of fluid mechanics in 

the fluid region of interest.

– Governing differential equations: algebraic.

– The collection of cells is called the grid. 

– The set of algebraic equations are solved 

numerically (on a computer) for the flow field 

variables at each node or cell.

– System of equations are solved 

simultaneously to provide solution.

• The solution is post-processed to extract 

quantities of interest (e.g., lift, drag, torque, 

heat transfer, separation, pressure loss, etc.). 

1. Introduction to CFD
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Discretization

• Domain is discretized into a finite set of control volumes 

or cells. The discretized domain is called the “grid” or the “mesh.”

• General conservation (transport) equations for mass, momentum, 

energy, etc., are discretized into algebraic equations.

• All equations are solved to render flow field.

 +=+




VAAV

dVSdddV
t

 AAV

unsteady convection diffusion generation

Eqn.

continuity 1

x-mom. u

y-mom. v

energy h



Fluid region of 

pipe flow 

discretized into 

finite set of control 

volumes (mesh). 

control 

volume
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Design and create the grid

• Should you use a quad/hex grid, a tri/tet grid, a hybrid grid, or a 

non-conformal grid?

• What degree of grid resolution is required in each region of the 

domain?

• How many cells are required for the problem?

• Will you use adaption to add resolution?

• Do you have sufficient computer memory?

triangle

quadrilateral

tetrahedron pyramid

prism or wedgehexahedron

1. Introduction to CFD



Tri/tet vs. quad/hex meshes

• For simple geometries, quad/hex 

meshes can provide high-quality 

solutions with fewer cells than a 

comparable tri/tet mesh.

• For complex geometries, 

quad/hex meshes show no 

numerical advantage, and you 

can save meshing effort by using 

a tri/tet mesh.

30
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Hybrid mesh example

• Valve port grid.

• Specific regions can be meshed 

with different cell types.

• Both efficiency and accuracy are 

enhanced relative to a hexahedral 

or tetrahedral mesh alone.

Hybrid mesh for an 

IC engine valve port

tet mesh

hex mesh

wedge mesh
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Dinosaur mesh example
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Set up the numerical model

• For a given problem, you will need to:

– Select appropriate physical models.

– Turbulence, combustion, multiphase, etc.

– Define material properties.

• Fluid. 

• Solid.

• Mixture.

– Prescribe operating conditions.

– Prescribe boundary conditions at all boundary zones.

– Provide an initial solution.

– Set up solver controls.

– Set up convergence monitors.

1. Introduction to CFD
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Compute the solution

• The discretized conservation equations are solved iteratively. A 

number of iterations are usually required to reach a converged 

solution.

• Convergence is reached when:

– Changes in solution variables from one iteration to the next are 

negligible.

– Residuals provide a mechanism to help monitor this trend.

– Overall property conservation is achieved.

• The accuracy of a converged solution is dependent upon:

– Appropriateness and accuracy of the physical models.

– Grid resolution and independence.

– Problem setup.

1. Introduction to CFD
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Examine the results

• Visualization can be used to answer such questions as:

– What is the overall flow pattern?

– Is there separation?

– Where do shocks, shear layers, etc. form?

– Are key flow features being resolved?

– Are physical models and boundary conditions appropriate?

– Numerical reporting tools can be used to calculate quantitative 

results, e.g.:

• Lift, drag, and torque.

• Average heat transfer coefficients.

• Surface-averaged quantities.

1. Introduction to CFD
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Velocity vectors around a dinosaur
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Velocity magnitude (0-6 m/s) on a dinosaur

37

1. Introduction to CFD



38

Tools to examine the results

• Graphical tools:

– Grid, contour, and vector plots.

– Pathline and particle trajectory plots.

– XY plots.

– Animations.

• Numerical reporting tools:

– Flux balances.

– Surface and volume integrals and averages.

– Forces and moments.

• The next slides show an example of a CFD analysis for an 

amusement park dinosaur.

1. Introduction to CFD
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Pressure field on a dinosaur 

39
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Forces on the dinosaur

• Drag force: 17.4 N.

• Lift force: 5.5 N.

• Wind velocity: 5 m/s.

• Air density: 1.225 kg/m3.

• The dinosaur is 3.2 m tall.

• It has a projected frontal area of A = 2.91 m2.

• The drag coefficient is:

• This is pretty good compared to the average car! The streamlined 

back of the dinosaur resulted in a flow pattern with very little 

separation.

11.0
91.2*25*225.1*5.0

4.17
2

2

1
===

Av

F
C D

D

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Consider revisions to the model

• Are physical models appropriate?

– Is flow turbulent?

– Is flow unsteady?

– Are there compressibility effects?

– Are there 3D effects?

– Are boundary conditions correct?

• Is the computational domain large enough?

– Are boundary conditions appropriate?

– Are boundary values reasonable?

• Is grid adequate?

– Can grid be adapted to improve results?

– Does solution change significantly with adaption, or is the solution 

grid independent?

– Does boundary resolution need to be improved?

1. Introduction to CFD
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Applications of CFD

• Applications of CFD are numerous!

– Flow and heat transfer in industrial processes (boilers, heat 

exchangers, combustion equipment, pumps, blowers, piping, etc.).

– Aerodynamics of ground vehicles, aircraft, missiles.

– Film coating, thermoforming in material processing applications.

– Flow and heat transfer in propulsion and power generation systems.

– Ventilation, heating, and cooling flows in buildings.

– Chemical vapor deposition (CVD) for integrated circuit 

manufacturing.

– Heat transfer for electronics packaging applications.

– And many, many more!

1. Introduction to CFD
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Advantages of CFD (1/2)

• Relatively low cost.

– Using physical experiments and tests to get essential engineering 

data for design can be expensive.

– CFD simulations are relatively inexpensive, and costs are likely to 

decrease as computers become more powerful.

• Speed.

– CFD simulations can be executed in a short period of time.

– Quick turnaround means engineering data can be introduced early in 

the design process.

• Ability to simulate real conditions.

– Many flow and heat transfer processes cannot be (easily) tested, 

e.g., hypersonic flow.

– CFD provides the ability to theoretically simulate any physical 

condition.

1. Introduction to CFD
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Advantages of CFD (2/2)

• Ability to simulate ideal conditions.

– CFD allows great control over the physical process and provides the 

ability to isolate specific phenomena for study.

– Example: a heat transfer process can be idealized with adiabatic, 

constant heat flux, or constant temperature boundaries.

• Comprehensive information.

– Experiments only permit data to be extracted at a limited number of 

locations in the system (e.g., pressure and temperature probes, heat 

flux gauges, LDV, etc.).

– CFD allows the analyst to examine a large number of locations in the 

region of interest and yields a comprehensive set of flow parameters 

for examination.

1. Introduction to CFD
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Limitations of CFD (1/2)

• Physical models. 

– CFD solutions rely upon physical models of real-world processes 

(e.g., turbulence, compressibility, chemistry, multiphase flow, etc.).

– The CFD solutions can only be as accurate as the physical models 

on which they are based.

• Numerical errors.

– Solving equations on a computer invariably introduces numerical 

errors.

– Round-off error: due to finite word size available on the computer. 

Round-off errors will always exist (though they can be small in most 

cases).

– Truncation error: due to approximations in the numerical models. 

Truncation errors will go to zero as the grid is refined. Mesh 

refinement is one way to deal with truncation error.

1. Introduction to CFD
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poor better

Fully Developed Inlet 

Profile

Computational 

Domain

Computational 

Domain

Uniform Inlet 

Profile

Limitations of CFD (2/2)

• Boundary conditions.

– As with physical models, the accuracy of the CFD solution is only as 

good as the initial/boundary conditions provided to the numerical 

model.

– Example: flow in a duct with sudden expansion. If flow is supplied to 

domain by a pipe, you should use a fully-developed profile for 

velocity rather than assume uniform conditions.

1. Introduction to CFD
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Summary

• CFD is a method to numerically calculate heat transfer and fluid 

flow.

• Currently, its main application is as an engineering method, to 

provide data that is complementary to theoretical and experimental 

data. This is mainly the domain of commercially available codes 

and in-house codes at large companies.

• CFD can also be used for purely scientific studies, e.g., into the 

fundamentals of turbulence. This is more common in academic 

institutions and government research laboratories. Codes are 

usually developed to specifically study a certain problem.

1. Introduction to CFD
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Important variables

• Pressure and fluid velocities are always calculated in conjunction. 

Pressure can be used to calculate forces on objects, e.g., for the 

prediction of drag of a car. Fluid velocities can be visualized to 

show flow structures.

• From the flow field we can derive other variables such as shear 

and vorticity. Shear stresses may relate to erosion of solid 

surfaces. Deformation of fluid elements is important in mixing 

processes. Vorticity describes the rotation of fluid elements.

• In turbulent flows, turbulent kinetic energy and dissipation rate are 

important for such processes as heat transfer and mass transfer in 

boundary layers.

• For non-isothermal flows, the temperature field is important. This 

may govern evaporation, combustion, and other processes.

• In some processes, radiation is important.

2. Flow fields
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Post-processing

• Results are usually reviewed in one of two ways: 
graphically or alphanumerically. 

• Graphically:

– Vector plots.

– Contours. 

– Iso-surfaces.

– Flowlines.

– Animation.

• Alphanumerics:

– Integral values.

– Drag, lift, torque calculations.

– Averages, standard deviations.

– Minima, maxima.

– Compare with experimental data.

2. Flow fields
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A flow field example: the football

• Regulation size American football.

• Perfect throw. Ball is thrown from right to left.

• Flow field relative to the ball is from left to right.

• Shown here are filled contours of velocity magnitude (time 

averaged).

2. Flow fields
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Football flow field

• Velocity vectors.

• Watch the flow separation behind the leather strips.

2. Flow fields



Vector plot on the grid nodes. Irregular looking.
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Vector plot interpolated onto a regular grid.
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Fluid motion

• In a fluid flow field, each fluid element undergoes three different 

effects:

– 1. Translation.

– 2. Deformation.

– 3. Rotation.

Translation and deformation

Image: Homsy et al. [2] 
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Example: flow around a cylinder - grid
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Flow around a cylinder – grid zoomed in
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Flow around a cylinder – velocity vectors

58

2. Flow fields



59

Flow around a cylinder – velocity magnitude
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Flow around a cylinder – pressure field
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Pressure

• Pressure can be used to calculate forces (e.g., drag, lift, or torque) 

on objects by integrating the pressure over the surface of the 

object.

• Pressure consists of three components:

– Hydrostatic pressure gh. 

– Dynamic pressure v2/2.

– Static pressure ps. This can be further split into an operating 

pressure (e.g., atmospheric pressure) and a gauge pressure.

• When static pressure is reported it is usually the gauge pressure 

only.

• Total pressure is the static pressure plus the dynamic pressure. 

2. Flow fields
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Methods to show translation

• Translation can be shown by 

means of:

– Velocity vectors.

– Flowlines:

• Streamlines.

• Pathlines.

• Streaklines.

• Timelines.

• Oilflow lines.

Images: Homsy et al. [2] 
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Streamlines

• Streamlines are curves that are everywhere tangent to the velocity 
vector U.

• The animation shows streamlines for a steady state 3-D flow.

• For 3-D flow fields, instead of streamlines one usually visualizes 
streaklines or pathlines, which for steady flow are the same.

• For 2-D flow fields, a stream function Ψ can be defined:

• In 2-D, lines of constant stream function

are streamlines. Calculating the stream

function and isolines is a more

efficient way to calculate streamlines

than by integrating particle tracks.

x
v

y
u




−=




=


;

Image: Homsy et al. [2] 

2. Flow fields



64

Stream function – filled contours
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Lines of constant stream function
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Pathlines

• A pathline is the trajectory followed by an individual particle.

• The pathline depends on the location where the particle was 

injected in the flow field and, in unsteady flows, also on the time 

when it was injected.

• In unsteady flows, pathlines may be difficult to follow and not easy 

to create experimentally.

• For a known flowfield, an initial location of the particle is specified. 

The trajectory can then be calculated by integrating the advection 

equation:

0
)0(),(

)(
XXXU

X
== conditioninitalwitht

dt

td

2. Flow fields
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Pathlines

• Example: pathlines in a static mixer.

2. Flow fields
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Pathlines and streaklines - unsteady flow (1/2)

• The animation shows a simple model of an unsteady flow coming from 
a smokestack.

• First, there is no wind, and the smoke goes straight up.

• Next there is a strong wind coming from the right.

• The yellow circles show the trajectory of a single particle released at 
time 0. The pathline is straight up with a sharp angle to left.

• The grayish smoke shows what happens to a continuous stream. First 
it goes straight up, but then 

the whole, vertical plume of

smoke moves to the left.

• So, although for steady flows. 

pathlines and streaklines are the

same, they are not for unsteady 

flows.

Image: Homsy et al. [2] 
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Pathlines and streaklines - unsteady flow (2/2)

Images: Homsy et al. [2] 

2. Flow fields
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Streaklines

• This is the flowline formed by a series of particles released 

continuously in the flow.

• Experimentally, this can also be done by continuous dye injections.

• In steady flows, streaklines and pathlines coincide.

• In unsteady flows, they may be very different.

The lines formed by 

the continuous 

injection of the green 

dye are streaklines.

The trajectories followed 

by individual particles 

are pathlines.

Image: Homsy et al. [2] 
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Timelines

• A timeline is the flow line that arises when we place a marker 

along a curve at some initial time and inquire into the shape of this 

curve at a later time.

• They are sometimes called material lines.

• Like streaklines they involve the simultaneous positions of many 

particles but unlike streaklines the particles of a timeline do not 

emanate from a single point but are initially distributed along a 

curve.

• They are relatively easy to produce experimentally, by placing 

lines of dyes in the flow field at time zero.

• In fluid mixing studies the deformation of material lines is studied 

in great detail.

Image: Homsy et al. [2] 
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Oilflow lines

• Oilflow lines are pathlines that are constrained to a surface, 

e.g., the lines traced by droplets of water on a car windshield. 

2. Flow fields
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Deformation - derivatives

• An instantaneous flow field is defined by velocities u(x,y,z), 

v(x,y,z), and w(x,y,z).

• The derivatives are du/dx, du/dy, etc.

• The tensor u is the gradient of the velocity vector.

• Each of the terms by itself is a gradient, e.g., du/dy is the gradient 

of the u-velocity component in the y-direction. These may also be 

called shear rates.
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Decomposition

• For the analysis of incompressible flows, it is common to 

decompose the gradient in the velocity vector as follows:

• Sij is the symmetric rate-of-strain (deformation) tensor.

• Ij is the antisymmetric rate-of-rotation tensor.

• The vorticity and the rate of rotation are related by:
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Deformation tensor

• The velocity gradients can be used to construct the deformation rate 

tensor S:

• This symmetric tensor is also called the rate of strain tensor.

• Instead of the symbol S, the symbols D and E are sometimes used.
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Deformation illustration

• In an incompressible flow field, a 

fluid parcel may become 

distorted, but it retains its original 

volume.

• The divergence of the velocity 

field is zero: div u = 0. This is the 

continuity equation.

• De deformation is governed by 

the rate of strain tensor.

76Images: Homsy et al. [2] 
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Strain rate

• The deformation rate tensor appears in the momentum 

conservation equations.

• It is common to report the strain rate S(1/s), which is based on the 

Euclidian norm of the deformation tensor:

• The strain rate may also be called the shear rate.

• The strain rate may be used for various other calculations:

– For non-Newtonian fluids, the viscosity depends on the strain rate.

– In emulsions, droplet size may depend on the strain rate.

– The strain rate may affect particle formation and agglomeration in 

pharmaceutical applications.

ijij
SSS 2=
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Filled contours of strain rate

78
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Filled contours of strain rate – zoomed in

79
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• As discussed, the motion of each fluid element can be described 

as the sum of a translation, rotation, and deformation.

• The animation shows a translation and a rotation.

• Vorticity is a measure of the degree of local rotation in the fluid. 

This is a vector. Unit is 1/s. 

• For a 2-D flow this vector is always normal to the flow field plane.

• For 2-D flows, vorticity is then usually reported as the scalar:

• For 2-D flows, a positive vorticity 

indicates a counterclockwise rotation 

and a negative vorticity a clockwise 

rotation.

Rotation: vorticity
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80Image: Homsy et al. [2] 
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Vorticity - 3-D
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Filled contours of vorticity

82
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H = ω U

|))||/(|(cos 1
UωH−=

Vortexlines and helicity

• Iso-surfaces of vorticity can be used to show vortices in the flow 

field.

• Vortex lines are lines that are everywhere parallel to the vorticity 

vector.

• Vortex cores are lines that are both streamlines and vortexlines.

• The helicity H is the dot product of the vorticity and velocity 

vectors:

• It provides insight into how the vorticity vector and the velocity 

vector are aligned. The angle between the vorticity vector and the 

velocity vector (which is 0º or 180º in a vortex core) is given by:

• Algorithms exist that use helicity to automatically find vortex cores. 

In practice this only works on very fine grids with deeply converged 

solutions.

2. Flow fields
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Isosurfaces of vorticity magnitude

Iso-surface of vorticity magnitude colored by velocity magnitude.

2. Flow fields
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Isosurfaces of vorticity magnitude

Iso-surface of vorticity magnitude colored by velocity magnitude.
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Comparison between strain and vorticity

• Both strain and vorticity contain velocity gradients.

• The difference between the two will be shown based on three 

different flow fields:

– A planar shear field: both the strain rate and the vorticity magnitude 

are non-zero.

– A solid body rotation: the strain rate is 0(!) and the vorticity reflects 

the rotation speed.

– Shear field and solid body rotation combined.

2. Flow fields
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A planar shear field
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Solid body rotation

88
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Shear field and solid body rotation combined

89
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Flux reports and surface integrals

• Integral value:

• Area weighted average:

• Mass flow rate:
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• Turbulent simulation (using k- RNG and 170,000 tetrahedral cells) is 

used to predict the near-body pressure field.

Quantitative validation - moving locomotive

2. Flow fields



92

• Pressure contours show the disturbance of the passing train in the near 
field region.

• The figure on the left shows the pressure field over the locomotive.

• Predictions of pressure coefficient alongside the train agree reasonably 
well with experimental data.

Flow over a moving locomotive

2. Flow fields
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• The surrounding fluid exerts pressure forces and viscous forces on 

the airfoil:

• The components of the resultant force acting on the object 

immersed in the fluid are the drag force and the lift force. The drag 

force D acts in the direction of the motion of the fluid relative to the 

object. The lift force L acts normal to the flow direction.

• Lift and drag are obtained by integrating the pressure field and 

viscous forces over the surface of the airfoil.

p < 0
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p > 0
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Lift Drag

22

2

1
..               

2

1
.. UACDUACL DL ==

Quantitative validation - NACA airfoil
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Quantitative validation - NACA airfoil

• Transonic, compressible flow over 

the NACA 0012 airfoil is modeled 

using FLUENT.

– Free stream Mach number = 0.7.

– 1.49o angle of attack.

• The realizable k- turbulence 

model with 2-layer zonal model 

for near-wall treatment is used.

• Pressure contours.

Stagnation point

2. Flow fields
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• The pressure coefficient is 

calculated as follows:

• Here p0 is the far-field pressure 

and v0 the free stream velocity.

• Pressure coefficient for upper 

(top) and lower airfoil surfaces 

shows very good agreement with 

data.

• Drag coefficient:

– FLUENT:  0.0084

– Coakley*:  0.0079

*Thomas J. Coakley, “Numerical 

simulation of viscous transonic airfoil 

flows”, AIAA-87-0416, 1987.

Transonic flow over NACA airfoil
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• Mach number contours exhibit 

transonic flow, with maximum (red) 

of 1.08.

• Turbulence kinetic energy contours 

show generation primarily in 

boundary layer.

• Overall CFD can be very useful in 

validating lift and drag for airfoils.

Transonic flow over NACA airfoil

2. Flow fields
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Summary

• CFD simulations result in data that describes a flow field.

• Proper analysis and interpretation of this flow field data is required 

in order to be able to solve the original engineering problem.

• The amount of data generated by a CFD simulation can be 

enormous. Analysis and interpretation are not trivial tasks and the 

time it takes to do this properly is often underestimated.

2. Flow fields
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Lecture 3 - Conservation Equations

Applied Computational Fluid Dynamics

André Bakker
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• This lecture largely follows Versteeg and Malalasekera [10]. 

• The governing equations include the following conservation laws 

of physics:

– Conservation of mass.

– Newton’s second law: the change of momentum equals the sum of 

forces on a fluid particle.

– First law of thermodynamics (conservation of energy): rate of change 

of energy equals the sum of rate of heat addition to and work done 

on fluid particle.

• The fluid is treated as a continuum. For length scales of, say, 1m 

and larger, the molecular structure and motions may be ignored.

– We treat all properties as averages over a suitably large number of 

molecules.

– A small element of fluid, a fluid particle or fluid point, is the smallest 

element of fluid whose macroscopic properties are not influenced by 

individual molecules.

Governing equations

3. Conservation equations
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Lagrangian vs. Eulerian description

A fluid flow field can be thought of 

as being comprised of a large 

number of finite sized fluid 

particles which have mass, 

momentum, internal energy, and 

other properties. Mathematical 

laws can then be written for each 

fluid particle. This is the 

Lagrangian description of fluid 

motion.

Another view of fluid motion is the 

Eulerian description. In the 

Eulerian description of fluid 

motion, we consider how flow 

properties change at a fluid 

element that is fixed in space and 

time (x,y,z,t), rather than following 

individual fluid particles.

Governing equations can be derived using each method 

and converted to the other form.

3. Conservation equations
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Fluid element and properties

• The behavior of the fluid is described in 
terms of macroscopic properties:

– Velocity u.

– Pressure p.

– Density .

– Temperature T.

– Energy E.

• Typically ignore (x,y,z,t) in the notation.

• Properties are averages of a sufficiently 
large number of molecules.

• A fluid element can be thought of as the 
smallest volume for which the continuum 
assumption is valid.

x
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Fluid element for 

conservation laws
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Mass balance

• Rate of increase of mass in fluid element equals the net rate of 

flow of mass into element.

• Rate of increase is:

• The inflows (positive) and outflows (negative) are shown here:
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Continuity equation

• Summing all terms in the previous slide and dividing by the volume 

dxdydz results in:

• In vector notation:

• For incompressible fluids  / t = 0, and the equation becomes: 

div u = 0.

• Alternative ways to write this:                           and
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Different forms of the continuity equation
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Different forms of the continuity equation

formonConservati

formIntegral
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U

Control volumes shown on left are fixed in space: Eulerian description, 

also called the conservation form.

Control volumes shown on right move with flow: Lagrangian description, 

also called the non-conservation form.

Important: in Lagrangian description we look at fluid particles with FIXED 

MASS, so integral form does not contain a velocity surface integral since there 

is no net mass flux across the surface. But the volume and average density 

may still change.

The book also calls the differential – conservation form, the “divergence form”.

3. Conservation equations
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Rate of change for a fluid particle

• Terminology: fluid element is a volume stationary in space, and a 

fluid particle is a volume of fluid moving with the flow.

• A moving fluid particle experiences two rates of changes:

– Change due to changes in the fluid as a function of time.

– Change due to the fact that it moves to a different location in the fluid 

with different conditions.

• The sum of these two rates of changes for a property per unit 

mass  is called the total or substantive derivative D /Dt:

• With dx/dt=u, dy/dt=v, dz/dt=w, this results in:
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Rate of change for a stationary fluid element

• In most cases we are interested in the changes of a flow property 

for a fluid element, or fluid volume, that is stationary in space.

• However, some equations are easier derived for fluid particles. For 

a moving fluid particle, the total derivative per unit volume of this 

property  is given by:

• For a fluid element, for an arbitrary conserved property  :
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Fluid particle and fluid element

• We can derive the relationship between the equations for a fluid 

particle (Lagrangian) and a fluid element (Eulerian) as follows:
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To remember so far

• We need to derive conservation equations that we can solve to 

calculate fluid velocities and other properties.

• These equations can be derived either for a fluid particle that is 

moving with the flow (Lagrangian) or for a fluid element that is 

stationary in space (Eulerian).

• For CFD purposes we need them in Eulerian form, but (according 

to the book) they are somewhat easier to derive in Lagrangian 

form.

• Luckily, when we derive equations for a property  in one form, we 

can convert them to the other form using the relationship shown on 

the bottom in the previous slide.

3. Conservation equations
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Relevant entries for Φ
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Momentum equation in three dimensions

• We will first derive conservation equations for momentum and 

energy for fluid particles. Next, we will use the above relationships 

to transform those to an Eulerian frame (for fluid elements). 

• We start with deriving the momentum equations.

• Newton’s second law: rate of change of momentum equals sum of 

forces.

• Rate of increase of x-, y-, and z-momentum:

• Forces on fluid particles are:

– Surface forces such as pressure and viscous forces.

– Body forces, which act on a volume, such as gravity, centrifugal, 

Coriolis, and electromagnetic forces.
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Du
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Viscous stresses

• Stresses are forces per area. Unit 

is N/m2 or Pa.

• Viscous stresses denoted by t.

• Suffix notation tij is used to 

indicate direction.

• Nine stress components.

– txx, tyy, tzz are normal stresses. 

e.g., tzz is the stress in the z-

direction on a z-plane.

– Other stresses are shear 

stresses. e.g., tzy is the stress in 

the y-direction on a z-plane.

• Forces aligned with the direction 

of a coordinate axis are positive. 

Opposite direction is negative.
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Forces in the x-direction
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Net force in the x-direction is the sum of all the force components in that direction.
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Momentum equation

• Set the rate of change of x-momentum for a fluid particle Du/Dt 

equal to:

– the sum of the forces due to surface stresses shown in the previous 

slide, plus

– the body forces. These are usually lumped together into a source 

term SM:

– p is a compressive stress and txx is a tensile stress.

• Similarly, for y- and z-momentum:
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Energy equation

• First law of thermodynamics: rate of change of energy of a fluid 
particle is equal to the rate of heat addition plus the rate of work 
done.

• Rate of increase of energy is DE/Dt.

• Energy E = i + ½ (u2+v2+w2). 

• Here, i is the internal (thermal energy).

• ½ (u2+v2+w2) is the kinetic energy.

• Potential energy (gravitation) is usually treated separately and 
included as a source term.

• We will derive the energy equation by setting the total derivative 
equal to the change in energy as a result of work done by viscous 
stresses and the net heat conduction.

• Next, we will subtract the kinetic energy equation to arrive at a 
conservation equation for the internal energy.
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Work done by surface stresses in x-direction
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Work done is force times velocity. 
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Work done by surface stresses

• The total rate of work done by surface stresses is calculated as 

follows:

– For work done by x-components of stresses add all terms in the 

previous slide.

– Do the same for the y- and z-components.

• Add all and divide by dxdydz to get the work done per unit volume 

by the surface stresses:
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Energy flux due to heat conduction
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The heat flux vector q has three components, qx, qy, and qz.
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Energy flux due to heat conduction

• Summing all terms and dividing by dxdydz gives the net rate of heat 

transfer to the fluid particle per unit volume:

• Fourier’s law of heat conduction relates the heat flux to the local 

temperature gradient:

• In vector form:

• Thus, energy flux due to conduction:   

• This is the final form used in the energy equation.
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Energy equation

• Setting the total derivative for the energy in a fluid particle equal to 

the previously derived work and energy flux terms, results in the 

following energy equation:

• Note that we also added a source term SE that includes sources 

(potential energy, sources due to heat production from chemical 

reactions, etc.).
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Kinetic energy equation

• Separately, we can derive a conservation equation for the kinetic 

energy of the fluid.

• In order to do this, we multiply the u-momentum equation by u, the 

v-momentum equation by v, and the w-momentum equation by w. 

We then add the results together. 

• This results in the following equation for the kinetic energy:
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Internal energy equation

• Subtract the kinetic energy equation from the energy equation.

• Define a new source term for the internal energy as 

Si = SE - u.SM. This results in:
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Enthalpy equation

• An often-used alternative form of the energy equation is the total 

enthalpy equation.

– Specific enthalpy h = i + p/.

– Total enthalpy h0 = h + ½ (u2+v2+w2) = E + p/.
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Equations of state

• Fluid motion is described by five partial differential equations for 
mass, momentum, and energy.

• Amongst the unknowns are four thermodynamic variables: , p, i, 
and T.

• We will assume thermodynamic equilibrium, i.e., that the time it 
takes for a fluid particle to adjust to new conditions is short relative 
to the timescale of the flow.

• We add two equations of state using the two state variables  and 
T:  p=p(,T) and  i=i(,T).

• For a perfect gas, these become:  p= RT and  i=CvT.

• At low speeds (e.g., Ma < 0.2), the fluids can be considered 
incompressible. There is no linkage between the energy equation, 
and the mass and momentum equation. We then only need to 
solve for energy if the problem involves heat transfer.
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Viscous stresses

• A model for the viscous stresses tij is required.

• We will express the viscous stresses as functions of the local 

deformation rate (strain rate) tensor.

• There are two types of deformation:

– Linear deformation rates due to velocity gradients.

• Elongating stress components (stretching).

• Shearing stress components.

– Volumetric deformation rates due to expansion or compression.

• All gases and most fluids are isotropic: viscosity is a scalar.

• Some fluids have anisotropic viscous stress properties, such as 

certain polymers and dough. We will not discuss those here.
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Viscous stress tensor

























−















+
















+

















+




−
















+

















+
















+




−





=

















=

u

u

u

τ

div
z

w

y

w

z

v

x

w

z

u

y

w

z

v
div

y

v

x

v

y

u

x

w

z

u

x

v

y

u
div

x

u

zzzyzx

yzyyyx

xzxyxx







ttt

ttt

ttt

3

2
2

3

2
2

3

2
2

• Using an isotropic (first) dynamic viscosity  for the linear 

deformations and a second viscosity l=-2/3  for the volumetric 

deformations results in:

Note: div u = 0 for incompressible fluids.
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Navier-Stokes equations

• Including the viscous stress terms in the momentum balance and 

rearranging, results in the Navier-Stokes equations:
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Viscous dissipation

• Similarly, substituting the stresses in the internal energy equation 

and rearranging results in:

• Here F is the viscous dissipation term. This term is always positive 

and describes the conversion of mechanical energy to heat.
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Summary of equations in conservation form
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• The system of equations is now closed, with seven equations for seven 

variables: pressure, three velocity components, enthalpy, temperature, 

and density.

• There are significant commonalities between the various equations. 

Using a general variable , the conservative form of all fluid flow 

equations can usefully be written in the following form:

• Or, in words:

General transport equations
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Integral form

• The key step of the finite volume method is to integrate the 

differential equation shown in the previous slide, and then to apply 

Gauss’ divergence theorem, which for a vector a states:

• This then leads to the following general conservation equation in 

integral form:

• This is the actual form of the conservation equations solved by finite 

volume based CFD programs to calculate the flow pattern and 

associated scalar fields.
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Lecture 4 – Classification of Flows

Applied Computational Fluid Dynamics

André Bakker



Classification: fluid flow vs. granular flow

• Fluid and solid particles: fluid flow 

vs. granular flow. 

• A fluid consists of a large number 

of individual molecules. These 

could in principle be modeled as 

interacting solid particles.

• The interaction between adjacent 

salt grains and adjacent fluid 

parcels is quite different, however.

133Images: Homsy et al. [2] 
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Reynolds number

• The Reynolds number Re is defined as: Re =  V L / .

• Here L is a characteristic length, and V is the velocity. 

• It is a measure of the ratio between inertial forces and viscous 

forces.

• If Re >> 1 the flow is dominated by inertia.

• If Re << 1 the flow is dominated by viscous effects.

4. Classification of flows



Effect of Reynolds number

Re = 0.05             Re = 10                   Re = 200                Re = 3000

135Image: Homsy et al. [2] 
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Newton’s second law

• For a solid mass: F = m.a

• For a continuum:

• Expressed in terms of velocity field u(x,y,z,t). In this form the 

momentum equation is also called Cauchy’s law of motion.

• For an incompressible Newtonian fluid, this becomes:

• Here p is the pressure and  is the dynamic viscosity. In this form, 

the momentum balance is also called the Navier-Stokes equation.
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Scaling the Navier-Stokes equation

• For unsteady, low viscosity flows it is customary to make the 

pressure dimensionless with V2. This results in:
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Euler equation

• In the limit of Re → the stress term vanishes:

• In dimensional form, with  = 0, we get the Euler equations:

• The flow is then inviscid.
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Scaling the Navier-Stokes equation - viscous

• For steady state, viscous flows it is customary to make the 

pressure dimensionless with V/L. This results in:
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Navier-Stokes and Bernoulli

• When:

– The flow is steady:

– The flow is irrotational: the vorticity

– The flow is inviscid: μ = 0

• And using:

• We can rewrite the Navier-Stokes equation:  

as the Bernoulli equation:
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Basic quantities

• The Navier-Stokes 

equations for 

incompressible flow involve 

four basic quantities:

– Local (unsteady) 

acceleration.

– Convective 

acceleration.

– Pressure gradients.

– Viscous forces.

• The ease with which 

solutions can be obtained 

and the complexity of the 

resulting flows often 

depend on which quantities 

are important for a given 

flow.

(steady laminar flow)

(impulsively started)

(boundary layer)

(inviscid, impulsively started)

(inviscid)

(unsteady flow)

(steady viscous flow)

Image: Homsy et al. [2] 
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Steady laminar flow

• Steady viscous laminar flow in a 

horizontal pipe involves a balance 

between the pressure forces 

along the pipe and viscous forces.

• The local acceleration is zero 

because the flow is steady.

• The convective acceleration is 

zero because the velocity profiles 

are identical at any section along 

the pipe.

142Images: Homsy et al. [2] 
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Flow past an impulsively started flat plate

• Flow past an impulsively started 

flat plate of infinite length involves 

a balance between the local 

(unsteady) acceleration effects 

and viscous forces. Here, the 

development of the velocity profile 

is shown.

• The pressure is constant 

throughout the flow.

• The convective acceleration is 

zero because the velocity does 

not change in the direction of the 

flow, although it does change with 

time.

Images: Homsy et al. [2] 
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Boundary layer flow along a flat plate

• Boundary layer flow along a finite 

flat plate involves a balance 

between viscous forces in the 

region near the plate and 

convective acceleration effects.

• The boundary layer thickness 

grows in the downstream 

direction.

• The local acceleration is zero 

because the flow is steady.

Images: Homsy et al. [2] 
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Inviscid flow past an airfoil

• Inviscid flow past an airfoil 

involves a balance between 

pressure gradients and 

convective acceleration.

• Since the flow is steady, the local 

(unsteady) acceleration is zero.

• Since the fluid is inviscid (=0) 

there are no viscous forces.

Images: Homsy et al. [2] 
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Impulsively started flow of an inviscid fluid

• Impulsively started flow of an 

inviscid fluid in a pipe involves a 

balance between local (unsteady) 

acceleration effects and pressure 

differences.

• The absence of viscous forces 

allows the fluid to slip along the 

pipe wall, producing a uniform 

velocity profile.

• The convective acceleration is 

zero because the velocity does 

not vary in the direction of the 

flow.

• The local (unsteady) acceleration 

is not zero since the fluid velocity 

at any point is a function of time.

Images: Homsy et al. [2] 
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Steady viscous flow past a cylinder

• Steady viscous flow past a 

circular cylinder involves a 

balance among convective 

acceleration, pressure gradients, 

and viscous forces.

• For the parameters of this flow 

(density, viscosity, size, and 

speed), the steady boundary 

conditions (i.e., the cylinder is 

stationary) give steady flow 

throughout.

• For other values of these 

parameters the flow may be 

unsteady.

Images: Homsy et al. [2] 
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Unsteady flow past an airfoil

• Unsteady flow past an airfoil at a 

large angle of attack (stalled) is 

governed by a balance among 

local acceleration, convective 

acceleration, pressure gradients 

and viscous forces.

• A wide variety of fluid mechanics 

phenomena often occurs in 

situations such as these where all 

of the factors in the Navier-Stokes 

equations are relevant.

Images: Homsy et al. [2] 

4. Classification of flows



149

Flow classifications

• Laminar vs. turbulent flow.

– Laminar flow: fluid particles move in smooth, layered fashion (no 

substantial mixing of fluid occurs).

– Turbulent flow: fluid particles move in a chaotic, “tangled” fashion 

(significant mixing of fluid occurs).

• Steady vs. unsteady flow.

– Steady flow: flow properties at any given point in space are constant 

in time, e.g.,  p = p(x,y,z).

– Unsteady flow: flow properties at any given point in space change 

with time, e.g.,  p = p(x,y,z,t).

4. Classification of flows
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Newtonian vs. non-Newtonian

Newtonian

(low μ)

Newtonian

(high μ)
Bingham-plastic

t0

tc

Casson fluid

Pseudo-plastic

(shear-thinning)

Dilatant (shear-thickening)

Strain rate (1/s)

t (Pa)• Newtonian fluids: 

water, air.

• Pseudoplastic fluids: 

paint, printing ink.

• Dilatant fluids: dense 

slurries, wet cement.

• Bingham fluids: 

toothpaste, clay.

• Casson fluids: blood, 

yogurt.

• Visco-elastic fluids: 

polymers (not shown 

in graph because 

viscosity is not 

isotropic).
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Flow classifications

• Incompressible vs. compressible flow.

– Incompressible flow: volume of a given fluid particle does not 

change.

• Implies that density is constant everywhere.

• Essentially valid for all liquid flows.

– Compressible flow: volume of a given fluid particle can change with 

position.

• Implies that density will vary throughout the flow field.

• Compressible flows are further classified according to the value of the 

Mach number (M), where.

• M < 1 - Subsonic.

• M > 1 - Supersonic.

c

V
M =
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Flow classifications

• Single phase vs. multiphase flow.

– Single phase flow: fluid flows without phase change (either liquid or 

gas).

– Multiphase flow: multiple phases are present in the flow field (e.g., 

liquid-gas, liquid-solid, gas-solid).

• Homogeneous vs. heterogeneous flow.

– Homogeneous flow: only one fluid material exists in the flow field.

– Heterogeneous flow: multiple fluid/solid materials are present in the 

flow field (multi-species flows).

4. Classification of flows
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Flow configurations - external flow

• Fluid flows over an object in an unconfined domain.

• Viscous effects are important only in the vicinity of the object.

• Away from the object, the flow is essentially inviscid.

• Examples: flows over aircraft, projectiles, ground vehicles.

4. Classification of flows
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Flow configurations - internal flow

• Fluid flow is confined by walls, partitions, and other boundaries.

• Viscous effects extend across the entire domain.

• Examples: flows in pipes, ducts, diffusers, enclosures, nozzles.

airflow

temperature profile

car interior
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Classification of partial differential equations

• A general partial differential equation in coordinates x and y:

• Characterization depends on the roots of the higher order (here 

second order) terms:

– (b2-4ac) > 0 then the equation is called hyperbolic.

– (b2-4ac) = 0 then the equation is called parabolic.

– (b2-4ac) < 0 then the equation is called elliptic.

• Note: if a, b, and c themselves depend on x and y, the equations 

may be of different type, depending on the location in x-y space. In 

that case the equations are of mixed type.
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Origin of the terms

• The origin of the terms “elliptic,” “parabolic,” or “hyperbolic” used to 

label these equations is simply a direct analogy with the case for 

conic sections.

• The general equation for a conic section from analytic geometry is:

where if.

– (b2-4ac) > 0  the conic is a hyperbola.

– (b2-4ac) = 0  the conic is a parabola. 

– (b2-4ac) < 0  the conic is an ellipse.

022 =+++++ feydxcybxyax

4. Classification of flows



157

Elliptic problems

• Elliptic equations are characteristic of equilibrium problems, this includes many 

(but not all) steady state flows.

• Examples are potential flow, the steady state temperature distribution in a rod of 

solid material, and equilibrium stress distributions in solid objects under applied 

loads. 

• For potential flows the velocity is expressed in terms of a velocity potential: u=. 

Because the flow is incompressible, .u=0, which results in 2=0. This is also 

known as Laplace’s equation:

• The solution depends solely on the boundary conditions. This is also known as a 

boundary value problem.

• A disturbance in the interior of the solution affects the solution everywhere else. 

The disturbance signals travel in all directions.

• As a result, solutions are always smooth, even when boundary conditions are 

discontinuous. This makes numerical solution easier!
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Parabolic problems

• Parabolic equations describe marching problems. This includes time dependent 

problems which involve significant amounts of dissipation. Examples are 

unsteady viscous flows and unsteady heat conduction. Steady viscous boundary 

layer flow is also parabolic (march along streamline, not in time).

• An example is the transient temperature distribution in a cooling down rod:

• The temperature depends on both the initial and boundary conditions. This is also 

called an initial-boundary-value problem.

• Disturbances can only affect solutions at a later time.

• Dissipation ensures that the solution is always smooth.
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Hyperbolic problems

• Hyperbolic equations are typical of marching problems with negligible dissipation.

• An example is the wave equation:

• This describes the transverse displacement of a string during small amplitude 

vibrations. If y is the displacement, x the coordinate along the string, and a the 

initial amplitude, the solution is:

• Note that the amplitude is independent of time, i.e., there is no dissipation.

• Hyperbolic problems can have discontinuous solutions. 

• Disturbances may affect only a limited region in space. This is called the zone of 

influence. Disturbances propagate at the wave speed c.

• Local solutions may only depend on initial conditions in the domain of 

dependence.

• Examples of flows governed by hyperbolic equations are shockwaves in transonic 

and supersonic flows. 
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Classification of fluid flow equations

Steady Flow Unsteady Flow

Viscous flow Elliptic Parabolic

Inviscid flow M < 1 (subsonic)
Elliptic

Hyperbolic

M> 1 (supersonic)
Hyperbolic

Hyperbolic

Thin shear layers Parabolic Parabolic

• For inviscid flows at M<1, pressure disturbances travel faster than the 
flow speed (M is Mach number). If M>1, pressure disturbances cannot 
travel upstream. Limited zone of influence is a characteristic of hyperbolic 
problems.

• In thin shear layer flows, velocity derivatives in flow direction are much 
smaller than those in the cross-flow direction. Equations then effectively 
contain only one (second order) term and become parabolic. Also, the 
case for other strongly directional flows such as fully developed duct flow 
and jets.
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Example: the blunt-nosed body

Bow Shock M > 1

M > 1

M < 1

Elliptic 

region

Hyperbolic region

δ

Sonic 

Line

Blunt-nosed

body

• Blunt-nosed body designs are used 

for supersonic and hypersonic speeds 

(e.g., Apollo capsules and space 

shuttle) because they are less 

susceptible to aerodynamic heating 

than sharp nosed bodies.

• There is a strong, curved bow shock 

wave, detached from the nose by the 

shock detachment distance δ.

• Calculating this flow field was a major 

challenge during the 1950s and 

1960s because of the difficulties 

involved in solving for a flow field that 

is elliptic in one region and hyperbolic 

in others.

• Today’s CFD solvers can routinely 

handle such problems, provided that 

the flow is calculated as being 

transient.
161
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Initial and boundary conditions

• Initial conditions for unsteady flows:

– Everywhere in the solution region , u and T must be given at time 

t=0.

• Typical boundary conditions for unsteady and steady flows:

– On solid walls:

• u = uwall (no-slip condition).

• T=Twall (fixed temperature) or kT/n=-qwall (fixed heat flux).

– On fluid boundaries.

• For most flows, inlet: , u, and T must be known as a function of 

position. For external flows (flows around objects) and inviscid subsonic 

flows, inlet boundary conditions may be different.

• For most flows, outlet: -p+ un/n=Fn and  ut/n=Fn (stress continuity). 

F is the given surface stress. For fully developed flow Fn=-p (un/n =0) 

and Ft=0. For inviscid supersonic flows, outlet conditions may be 

different.

• A more detailed discussion of boundary conditions will follow.
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Summary

• Fluid flows can be classified in a variety of ways:

– Internal vs. external.

– Laminar vs. turbulent.

– Compressible vs. incompressible.

– Steady vs. unsteady.

– Supersonic vs. transonic vs. subsonic.

– Single-phase vs. multiphase.

– Elliptic vs. parabolic vs. hyperbolic.

4. Classification of flows
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Solution methods

• Focus on finite volume method.

• Background of finite volume method.

• Discretization example.

• General solution method.

• Convergence.

• Accuracy and numerical diffusion.

• Pressure velocity coupling.

• Segregated versus coupled solver methods.

• Multigrid solver.

• Summary.

5. Solution methods
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Overview of numerical methods

• Many CFD techniques exist.

• The most common in commercially available CFD programs are:

– The finite volume method has the broadest applicability (~80%).

– Finite element (~15%). 

• Here we will focus on the finite volume method.

• There are certainly many other approaches (5%), including:

– Finite difference.

– Finite element.

– Spectral methods.

– Boundary element.

– Vorticity based methods.

– Lattice gas/lattice Boltzmann.

– And more!

5. Solution methods
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• The domain is discretized into a series of grid points.

• A “structured” (ijk) mesh is required.

• The governing equations (in differential form) are discretized 
(converted to algebraic form).

• First and second derivatives are approximated by truncated Taylor 
series expansions.

• The resulting set of linear algebraic equations is solved either 
iteratively or simultaneously.

i

j
i

j

Finite difference: basic methodology
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coextrusion

metal insert

contours of velocity magnitude

• Earliest use was by Courant (1943) for solving a torsion problem.

• Clough (1960) gave the method its name.

• Method was refined greatly in the 60’s and 70’s, mostly for 

analyzing structural mechanics problem.

• FEM analysis of fluid flow was developed in the mid- to late 70’s.

• Advantages: highest accuracy on coarse grids. Excellent for 

diffusion dominated problems (viscous flow) and viscous, free 

surface problems.

• Disadvantages: slow for large problems

and not well suited for turbulent flow.

Finite element method (FEM)
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• First well-documented use was by Evans and Harlow (1957) at Los 

Alamos and Gentry, Martin and Daley (1966).

• Was attractive because while variables may not be continuously 

differentiable across shocks and other discontinuities mass, momentum 

and energy are always conserved.

• FVM enjoys an advantage in memory use and speed for very large 

problems, higher speed flows, turbulent flows, and source term 

dominated flows (like combustion). 

• Late 70’s, early 80’s saw development of body-fitted grids. By early 90’s, 

unstructured grid methods had appeared.

• Advantages: basic FV control volume balance does not limit cell shape; 

mass, momentum, energy conserved even on coarse grids; efficient, 

iterative solvers well developed.

• Disadvantages: false diffusion when simple numerics are used.

Finite volume method (FVM)
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• Divide the domain into control volumes. 

• Integrate the differential equation over the control volume and 

apply the divergence theorem.

• To evaluate derivative terms, values at the control volume faces 

are needed: have to make an assumption about how the value 

varies.

• Result is a set of linear algebraic equations: one for each control 

volume.

• Solve iteratively or simultaneously.

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Finite volume: basic methodology
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Control volume

Computational node

Boundary node

Cells and nodes

• Using finite volume method, the solution domain is subdivided into 

a finite number of small control volumes (cells) by a grid.

• The grid defines the boundaries of the control volumes while the 

computational node lies at the center of the control volume.

• The advantage of FVM is that the integral conservation is satisfied 

exactly over the control volume.
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173

• The net flux through the control volume boundary is the sum of 

integrals over the four control volume faces (six in 3D). The control 

volumes do not overlap.

• The value of the integrand is not available at the control volume 

faces and is determined by interpolation.

Typical control volume
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Discretization example

• To illustrate how the conservation equations used in CFD can be 

discretized we will look at an example involving the transport of a 

chemical species in a flow field.

• The species transport equation (constant density, incompressible 

flow) is given by: 

• Here c is the concentration of the chemical species and D is the 

diffusion coefficient. S is a source term.

• We will discretize this equation (convert 

it to a solvable algebraic form) for the 

simple flow field shown on the right, 

assuming steady state conditions.
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Discretization example - continued

• The balance over the control volume is given by:

• This contains values at the faces, which need to be determined 

from interpolation from the values at the cell centers.
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, , , : areas of the faces

, , , : concentrations at the faces

, , , : concentrations at the cell centers

, , , , , , , : velocities at the faces

, , , , , , , : velocities at the
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: source in cell P

: diffusion coefficient
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Discretization example - continued

• The simplest way to determine the values at the faces is by using 

first order upwind differencing. Here, let’s assume that the value at 

the face is equal to the value in the center of the cell upstream of 

the face. Using that method results in:

• This equation can then be rearranged to provide an expression for 

the concentration at the center of cell P as a function of the 

concentrations in the surrounding cells, the flow field, and the grid.
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Discretization example - continued

• Rearranging the previous equation results in:

• This equation can now be simplified to:

• Here nb refers to the neighboring cells. The coefficients anb and b will be 
different for every cell in the domain at every iteration. The species 
concentration field can be calculated by recalculating cP from this 
equation iteratively for all cells in the domain.
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General approach

• In the previous example we saw how the species transport 

equation could be discretized as a linear equation that can be 

solved iteratively for all cells in the domain. 

• This is the general approach to solving partial differential 

equations used in CFD. It is done for all conserved variables 

(momentum, species, energy, etc.).

• For the conservation equation for variable , the following steps 

are taken:

– Integration of conservation equation in each cell.

– Calculation of face values in terms of cell-centered values.

– Collection of like terms.

• The result is the following discretization equation (with nb denoting 

cell neighbors of cell P):

P P nb nb

nb

a a b = +
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General approach - relaxation

• At each iteration, at each cell, a new value for variable  in cell P 

can then be calculated from that equation.

• It is common to apply relaxation as follows:

• Here U is the relaxation factor:

– U < 1 is underrelaxation. This may slow down speed of convergence 

but increases the stability of the calculation, i.e., it decreases the 

possibility of divergence or oscillations in the solutions.

– U = 1 corresponds to no relaxation. One uses the predicted value of 

the variable.

– U > 1 is overrelaxation. It can sometimes be used to accelerate 

convergence but will decrease the stability of the calculation.

, ,( )new used old new predicted old

P P P PU   = + −
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Underrelaxation recommendation

• Underrelaxation factors are there to suppress oscillations in the 

flow solution that result from numerical errors. 

• Underrelaxation factors that are too small will significantly slow 

down convergence, sometimes to the extent that the user thinks 

the solution is converged when it really is not.

• The recommendation is to always use underrelaxation factors that 

are as high as possible, without resulting in oscillations or 

divergence.

• Typically, one should stay with the default factors in the solver.

• When the solution is converged but the pressure residual is still 

relatively high, the factors for pressure and momentum can be 

lowered to further refine the solution.
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• The iterative process is repeated until the change in the variable 

from one iteration to the next becomes so small that the solution 

can be considered converged.

• At convergence:

– All discrete conservation equations (momentum, energy, etc.) are 

obeyed in all cells to a specified tolerance.

– The solution no longer changes with additional iterations.

– Mass, momentum, energy and scalar balances are obtained.

• Residuals measure imbalance (or error) in conservation equations.

• The absolute residual at point P is defined as:

baaR nb nbnbPPP
−−=  

General approach - convergence

5. Solution methods



182

• Residuals are usually scaled relative to the local value of the 

property  in order to obtain a relative error:

• They can also be normalized, by dividing them by the maximum 

residual that was found at any time during the iterative process.

• An overall measure of the residual in the domain is:

• It is common to require the scaled residuals to be on the order of 

1E-3 to 1E-4 or less for convergence.
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Notes on convergence

• Always ensure proper convergence before using a solution: 

unconverged solutions can be misleading!!

• Solutions are converged when the flow field and scalar fields are 

no longer changing.

• Determining when this is the case can be difficult.

• It is most common to monitor the residuals.

5. Solution methods
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Monitor residuals

• If the residuals have met the 

specified convergence criterion 

but are still decreasing, the 

solution may not yet be 

converged.

• If the residuals never meet the 

convergence criterion but are no 

longer decreasing and other 

solution monitors do not change 

either, the solution is converged.

• Residuals are not your solution! 

Low residuals do not 

automatically mean a correct 

solution, and high residuals do not 

automatically mean a wrong 

solution.

• Final residuals are often higher 

with higher order discretization 

schemes than with first order 

discretization. That does not 

mean that the first order solution 

is better!

• Residuals can be monitored 

graphically also.
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Other convergence monitors

• For models whose purpose is to 

calculate a force on an object, the 

predicted force itself should be 

monitored for convergence.

• E.g., for an airfoil, one should 

monitor the predicted drag 

coefficient.

• Overall mass balance should be 

satisfied.

• When modeling rotating 

equipment such as turbofans or 

mixing impellers, the predicted 

torque should be monitored.

• For heat transfer problems, the 

temperature at important locations 

can be monitored.

• One can automatically generate 

flow field plots every 50 iterations 

or so to visually review the flow 

field and ensure that it is no 

longer changing.
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• Face values of  and /x are found by making assumptions 

about variation of  between cell centers.

• Number of different schemes can be devised:

– First-order upwind scheme.

– Central differencing scheme.

– Power-law scheme.

– Second-order upwind scheme.

– QUICK scheme.

• We will discuss these one by one.

Numerical schemes: finding face values
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First order upwind scheme

P e E

(x)

P e

E

Flow direction

• This is the simplest numerical 

scheme. It is the method that we 

used earlier in the discretization 

example.

• We assume that the value of  at 

the face is the same as the cell 

centered value in the cell 

upstream of the face.

• The main advantages are that it is 

easy to implement and that it 

results in very stable calculations, 

but it also very diffusive. 

Gradients in the flow field tend to 

be smeared out, as we will show 

later.

• This is often the best scheme to 

start calculations with.

interpolated 

value
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P e E

(x)

P

e
E

Central differencing scheme

• We determine the value of  at 

the face by linear interpolation 

between the cell centered values.

• This is more accurate than the 

first order upwind scheme, but it 

leads to oscillations in the solution 

or divergence if the local Peclet 

number is larger than 2. The 

Peclet number is the ratio 

between convective and diffusive 

transport:

• It is common to then switch to first 

order upwind in cells where Pe>2. 

Such an approach is called a 

hybrid scheme.

D

uL
Pe


=

interpolated 

value

5. Solution methods



189

• This is based on the analytical 

solution of the one-dimensional 

convection-diffusion equation.

• The face value is determined from 

an exponential profile through the 

cell values. The exponential 

profile is approximated by the 

following power law equation:

• Pe is again the Peclet number.

• For Pe>10, diffusion is ignored 

and first order upwind is used.

Power law scheme

( )
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PEPe
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P e E

(x)

P

e E

x

L

interpolated 

value
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Second-order upwind scheme

• We determine the value of  from 

the cell values in the two cells 

upstream of the face. 

• This is more accurate than the 

first order upwind scheme, but in 

regions with strong gradients it 

can result in face values that are 

outside of the range of cell values. 

It is then necessary to apply 

limiters to the predicted face 

values.

• There are many different ways to 

implement this, but second-order 

upwind with limiters is one of the 

more popular numerical schemes 

because of its combination of 

accuracy and stability.

P e E

(x)

P

e
E

W

W

Flow direction

interpolated 

value
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QUICK scheme

• QUICK stands for Quadratic 

Upwind Interpolation for 

Convective Kinetics.

• A quadratic curve is fitted through 

two upstream nodes and one 

downstream node.

• This is a very accurate scheme, 

but in regions with strong 

gradients, overshoots and 

undershoots can occur. This can 

lead to stability problems in the 

calculation.

P e E

(x)

P

e E

W

W

Flow direction

interpolated 

value
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Accuracy of numerical schemes

• Each of the previously discussed numerical schemes assumes some 

shape of the function . These functions can be approximated by Taylor 

series polynomials:

• The first order upwind scheme only uses the constant and ignores the 

first derivative and consecutive terms. This scheme is therefore 

considered first order accurate.

• For high Peclet numbers the power law scheme reduces to the first order 

upwind scheme, so it is also considered first order accurate.

• The central differencing scheme and second order upwind scheme do 

include the first order derivative but ignore the second order derivative. 

These schemes are therefore considered second order accurate. QUICK 

does take the second order derivative into account but ignores the third 

order derivative. This is then considered third order accurate.
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Hot fluid

Cold fluid

T = 100ºC

T = 0ºC

Diffusion set to zero

k=0

Accuracy and false diffusion (1)

• False diffusion is numerically introduced diffusion and arises in 

convection dominated flows, i.e., high Pe number flows.

• Consider the problem below. If there is no false diffusion, the 

temperature will be exactly 100 ºC everywhere above the diagonal 

and exactly 0 ºC everywhere below the diagonal.

• False diffusion will occur due to the oblique flow direction and non-

zero gradient of temperature in the direction normal to the flow.

• Grid refinement coupled 

with a higher-order 

interpolation scheme will 

minimize the false 

diffusion as shown on 

the next slide.
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8 x 8

64 x 64

First-order Upwind Second-order Upwind

Accuracy and false diffusion (2)
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Properties of numerical schemes

• All numerical schemes must have the following properties:

– Conservativeness: global conservation of the fluid property  must 

be ensured.

– Boundedness: values predicted by the scheme should be within 

realistic bounds. For linear problems without sources, those would 

be the maximum and minimum boundary values. Fluid flow is non-

linear and values in the domain may be outside the range of 

boundary values.

– Transportiveness: diffusion works in all directions but convection only 

in the flow direction. The numerical scheme should recognize the 

direction of the flow as it affects the strength of convection versus 

diffusion.

• The central differencing scheme does not have the 

transportiveness property. The other schemes that were discussed 

have all three of these properties.
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Solution accuracy

• Higher order schemes will be more accurate. They will also be less 

stable and will increase computational time.

• It is recommended to always start calculations with first order 

upwind and after 100 iterations or so to switch over to second 

order upwind.

• This provides a good combination of stability and accuracy.

• The central differencing scheme should only be used for transient 

calculations involving the large eddy simulation (LES) turbulence 

models in combination with grids that are fine enough that the 

Peclet number is always less than one.

• It is recommended to only use the power law or QUICK schemes if 

it is known that those are somehow especially suitable for the 

particular problem being studied.
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Pressure

• We saw how convection-diffusion equations can be solved. Such 

equations are available for all variables, except for the pressure. 

• Gradients in the pressure appear in the momentum equations, 

thus the pressure field needs to be calculated in order to be able to 

solve these equations.

• If the flow is compressible:

– The continuity equation can be used to compute density.

– Temperature follows from the enthalpy equation. 

– Pressure can then be calculated from the equation of state p=p(,T).

• However, if the flow is incompressible the density is constant and 

not linked to pressure.

• The solution of the Navier-Stokes equations is then complicated by 

the lack of an independent equation for pressure. 
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Pressure - velocity coupling

• Pressure appears in all three momentum equations. The velocity field 

also has to satisfy the continuity equation. So even though there is no 

explicit equation for pressure, we do have four equations for four 

variables, and the set of equations is closed.

• So-called pressure-velocity coupling algorithms are used to derive 

equations for the pressure from the momentum equations and the 

continuity equation.

• A commonly used algorithm is the SIMPLE (Semi-Implicit Method for 

Pressure-Linked Equations). An algebraic equation for the pressure 

correction p’ is derived, in a form similar to the equations derived for the 

convection-diffusion equations:

• Each iteration, the pressure field is updated by applying the pressure 

correction. The source term b’ is the continuity imbalance. The other 

coefficients depend on the mesh and the flow field.

 +=
nb

nbP
bpapa '''
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Principle behind SIMPLE

• The principle behind SIMPLE is quite simple!

• It is based on the premise that fluid flows from regions with high 

pressure to low pressure.

– Start with an initial pressure field.

– Look at a cell.

– If continuity is not satisfied because there is more mass flowing into 

that cell than out of the cell, the pressure in that cell compared to the 

neighboring cells must be too low.

– Thus, the pressure in that cell must be increased relative to the 

neighboring cells. 

– The reverse is true for cells where more mass flows out than in.

– Repeat this process iteratively for all cells.

• The trick is in finding a good equation for the pressure correction 

as a function of mass imbalance. These equations will not be 

discussed here but can be readily found in the literature.
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Improvements on SIMPLE

• SIMPLE is the default algorithm in most commercial finite volume 

codes.

• Improved versions are:

– SIMPLER (SIMPLE Revised).

– SIMPLEC (SIMPLE Consistent).

– PISO (Pressure Implicit with Splitting of Operators).

• All these algorithms can speed up convergence because they 

allow for the use of larger underrelaxation factors than SIMPLE.

• All of these will eventually converge to the same solution. The 

differences are in speed and stability.

• Which algorithm is fastest depends on the flow and there is no 

single algorithm that is always faster than the other ones.
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Finite volume solution methods

• The finite volume solution method can either use a “segregated” or 

a “coupled” solution procedure.

• With segregated methods an equation for a certain variable is 

solved for all cells, then the equation for the next variable is solved 

for all cells, etc.

• With coupled methods, for a given cell equations for all variables 

are solved, and that process is then repeated for all cells.

• The segregated solution method is the default method in most 

commercial finite volume codes. It is best suited for incompressible 

flows or compressible flows at low Mach number. 

• Compressible flows at high Mach number, especially when they 

involve shock waves, are best solved with the coupled solver.
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Update properties.

Solve momentum equations (u, v, w velocity).

Solve pressure-correction (continuity) equation. Update 

pressure, face mass flow rate.

Solve energy, species, turbulence, and other scalar equations.

Converged?

StopNo Yes

Segregated solution procedure
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Solve continuity, momentum, energy, and species 

equations simultaneously.

Converged?

StopNo Yes

Solve turbulence and other scalar equations.

Update properties.

Coupled solution procedure

• When the coupled solver is used for steady state calculations it 

essentially employs a modified time dependent solution algorithm, using 

a time step Dt = CFL/(u/L) with CFL being the user specified Courant-

Friedrich-Levy number, L being a measure of the size of the cell, and u

being a measure of the local velocities.
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Execute segregated or coupled procedure, iterating to convergence

Take a time step

Requested time steps completed?

No Yes Stop

Update solution values with converged values at current time

Unsteady solution procedure

• Same procedure for segregated and coupled solvers.

• The user has to specify a time step that matches the time variation in the 

flow.

• If a time accurate solution is required, the solution should be converged 

at every time step. Otherwise, convergence at every time step may not be 

necessary.
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The multigrid solver

• The algebraic equation                                  can be solved by 

sweeping through the domain cell-by-cell in an iterative manner.

• This method reduces local errors quickly but can be slow in 

reducing long-wavelength errors. 

• On large grids, it can take a long time to see the effect of faraway 

grid points and boundaries.

• Multigrid acceleration is a method to speed up convergence for:

– Large number of cells.

– Large cell aspect ratios (e.g., Dx/Dy > 20).

– Large differences in thermal conductivity such as in conjugate heat 

transfer problems.

 +=
nb nbnbPP baa 
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• The multigrid solver uses a sequence of grids going from fine to 

coarse.

• The influence of boundaries and far-away points is more easily 

transmitted to the interior on coarse meshes than on fine meshes.

• In coarse meshes, grid points are closer together in the 

computational space and have fewer computational cells between 

any two spatial locations.

• Fine meshes give more accurate solutions.

original grid coarse grid 

level 2

coarse grid 

level 1

The multigrid solver
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• The solution on the coarser meshes is used as a starting point for 

solutions on the finer meshes.

• The coarse-mesh solution contains the influence of boundaries 

and far neighbors. These effects are felt more easily on coarse 

meshes.

• This accelerates convergence on the fine mesh.

• The final solution is obtained for the original (fine) mesh.

• Coarse mesh calculations only accelerate convergence and do not 

change the final answer.

fine 

mesh

corrections

summed equations 

(or volume-averaged 

solution)

coarse 

mesh

The multigrid solver
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Finite volume method - summary

• The FVM uses the integral conservation equation applied to 

control volumes which subdivide the solution domain, and to the 

entire solution domain.

• The variable values at the faces of the control volume are 

determined by interpolation. False diffusion can arise depending 

on the choice of interpolation scheme.

• The grid must be refined to reduce “smearing” of the solution as 

shown in the last example.

• Advantages of FVM: integral conservation is exactly satisfied, and 

the method is not limited to grid type (structured or unstructured, 

Cartesian or body-fitted).

• Always ensure proper convergence.
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Outline

• Overview.

• Inlet and outlet boundaries.

– Velocity.

– Pressure boundaries and others.

• Wall, symmetry, periodic and axis boundaries.

• Internal cell zones.

– Fluid, porous media, moving cell zones.

– Solid.

• Internal face boundaries.

• Material properties.

• Proper specification.

6. Boundary conditions



Boundary conditions

• When solving the Navier-Stokes 

equation and continuity equation, 

appropriate initial conditions and 

boundary conditions need to be 

applied.

• In the example here, a no-slip 

boundary condition is applied at 

the solid wall.

• Boundary conditions will be 

treated in more detail in this 

lecture.

211Images: Homsy et al. [2] 
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Example: face and cell zones 

associated with pipe flow 

through orifice plate

inlet

outlet

wall

orifice

(interior)

orifice_plate and 

orifice_plate-shadow

fluid

Overview

• Boundary conditions are a 

required component of the 

mathematical model.

• Boundaries direct motion of flow. 

• Specify fluxes into the 

computational domain, e.g., 

mass, momentum, and energy.

• Fluid and solid regions are 

represented by cell zones.

• Material and source terms are 

assigned to cell zones.

• Boundaries and internal surfaces 

are represented by face zones.

• Boundary data are assigned to 

face zones.
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Neumann and Dirichlet boundary conditions

• When using a Dirichlet boundary condition, one prescribes the 

value of a variable at the boundary, e.g., u(x) = constant.

• When using a Neumann boundary condition, one prescribes the 

gradient normal to the boundary of a variable at the boundary, e.g., 

nu(x) = constant.

• When using a mixed boundary condition, a function of the form 

au(x)+bnu(x) = constant is applied.

• Note that at a given boundary, different types of boundary 

conditions can be used for different variables.
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Flow inlets and outlets

• A wide range of boundary conditions types permit the flow to enter 

and exit the solution domain:

– General: pressure inlet, pressure outlet.

– Incompressible flow: velocity inlet, outflow.

– Compressible flows: mass flow inlet, pressure far-field.

– Special: inlet vent, outlet vent, intake fan, exhaust fan.

• Boundary data required depends on physical models selected.

• General guidelines:

– Select boundary location and shape such that flow either goes in or 

out. Not mandatory but will typically result in better convergence.

– Should not observe large gradients in direction normal to boundary 

near inlets and outlets. This indicates an incorrect problem 

specification.

– Minimize grid skewness near boundary.
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• Pressure boundary conditions 

require static gauge pressure 

inputs:

• The operating pressure input is 

set separately.

• Useful when:

– Neither the flow rate nor the 

velocity are known (e.g., 

buoyancy-driven flows).

– A “free” boundary in an external 

or unconfined flow needs to be 

defined.

operatingstaticabsolute
ppp +=

gauge/static 

pressure

operating 

pressure

pressure 

level

operating 

pressure

absolute 

pressure

vacuum

Pressure boundary conditions
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• One defines the total gauge pressure, temperature, and other scalar 

quantities at flow inlets:

• Here k is the ratio of specific heats (cp/cv) and M is the Mach number. If 

the inlet flow is supersonic you should also specify the static pressure.

• Suitable for compressible and incompressible flows. Mass flux through 

boundary varies depending on interior solution and specified flow 

direction.

• The flow direction must be defined, and one can get non-physical results 

if no reasonable direction is specified. 

• Outflow can occur at pressure inlet boundaries. In that case the flow 

direction is taken from the interior solution.

)1/(2)
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1
1( −−
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k
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2

2

1
vpp statictotal += incompressible flows

compressible flows

Pressure inlet boundary (1)
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• For non-isothermal incompressible flows, one specifies the inlet 

temperature.

• For compressible flows, one specifies the total temperature T0, 

which is defined as the temperature that the flow would have if it 

were brought to a standstill under isentropic conditions:

• Here k is the ratio of specific heats (cp/cv), M is the Mach number, 

and Ts is the static temperature.

Pressure inlet boundary (2)
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Pressure outlet boundary

• Here one defines the static/gauge pressure at the outlet boundary. This is 
interpreted as the static pressure of the environment into which the flow 
exhausts.

• Usually, the static pressure is assumed to be constant over the outlet. A 
radial equilibrium pressure distribution option is available for cases where 
that is not appropriate, e.g., for strongly swirling flows.

• Backflow can occur at pressure outlet boundaries:

– During solution process or as part of solution.

– Backflow is assumed to be normal to the boundary.

– Convergence difficulties minimized by realistic values for backflow 
quantities.

– Value specified for static pressure used as total pressure wherever 
backflow occurs.

• Pressure outlet must always be used when model is set up with a 
pressure inlet.
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• Defines velocity vector and scalar properties of flow at inlet 

boundaries.

• Useful when velocity profile is known at inlet. Uniform profile is 

default but other profiles can be implemented too.

• Intended for incompressible flows. The total (stagnation) properties 

of flow are not fixed. Stagnation properties vary to accommodate 

prescribed velocity distribution. Using in compressible flows can 

lead to non-physical results.

• Avoid placing a velocity inlet too close to a solid obstruction. This 

can force the solution to be non-physical. 

Velocity inlets
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Outflow boundary

• Outflow boundary conditions are used to model flow exits where 

the details of the flow velocity and pressure are not known prior to 

solution of the flow problem. 

• Appropriate where the exit flow is close to a fully developed 

condition, as the outflow boundary condition assumes a zero 

normal gradient for all flow variables except pressure. The solver 

extrapolates the required information from interior.

• Furthermore, an overall mass balance correction is applied.
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outflow 

condition 

ill-posed

outflow 

condition 

not obeyed

outflow 

condition 

obeyed

outflow 

condition 

closely 

obeyed

Restrictions on outflow boundaries

• Outflow boundaries cannot be 

used:

– With compressible flows.

– With the pressure inlet boundary 

condition (use velocity inlet 

instead) because the 

combination does not uniquely 

set a pressure gradient over the 

whole domain.

– In unsteady flows with variable 

density.

• Do not use outflow boundaries 

where:

– Flow enters domain or when 

backflow occurs (in that case 

use pressure b.c.).

– Gradients in flow direction are 

significant.

– Conditions downstream of exit 

plane impact flow in domain.
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• Using outflow boundary condition:

– Mass flow divided equally among all outflow boundaries by default.

– Flow rate weighting (FRW) set to one by default.

– For uneven flow distribution one can specify the flow rate weighting 

for each outflow boundary: mi=FRWi/FRWi. The static pressure then 

varies among the exits to accommodate this flow distribution. 

• Can also use pressure outlet boundaries to define exits.

pressure-inlet (p0,T0) pressure-outlet (ps)2

velocity-inlet (v,T0)

pressure-outlet (ps)1

or

FRW2

velocity 

inlet

FRW1

Modeling multiple exits
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Other inlet and outlet boundary conditions

• Mass flow inlet.

– Used in compressible flows to prescribe mass flow rate at inlet.

– Not required for incompressible flows.

• Pressure far field.

– Available when density is calculated from the ideal gas law.

– Used to model free-stream compressible flow at infinity, with free-

stream Mach number and static conditions specified.

• Exhaust fan/outlet vent.

– Model external exhaust fan/outlet vent with specified pressure 

jump/loss coefficient and ambient (discharge) pressure and 

temperature.

• Inlet vent/intake fan.

– Model inlet vent/external intake fan with specified loss coefficient/ 

pressure jump, flow direction, and ambient (inlet) pressure and 

temperature.
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Determining turbulence parameters

• When turbulent flow enters domain at inlet, outlet, or at a far-field 

boundary, boundary values are required for:

– Turbulent kinetic energy k.

– Turbulence dissipation rate .

• Four methods available for specifying turbulence parameters:

– Set k and  explicitly. 

– Set turbulence intensity and turbulence length scale.

– Set turbulence intensity and turbulent viscosity ratio.

– Set turbulence intensity and hydraulic diameter.
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Turbulence intensity

• The turbulence intensity I is defined as:

• Here k is the turbulent kinetic energy and u is the local velocity 

magnitude.

• Intensity and length scale depend on conditions upstream:

– Exhaust of a turbine.

Intensity = 20%. Length scale = 1 - 10 % of blade span.

– Downstream of perforated plate or screen.

Intensity = 10%. Length scale = screen/hole size.

– Fully-developed flow in a duct or pipe.

Intensity = 5%. Length scale = hydraulic diameter.

u

k
I 3

2

=
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• Used to bound fluid and solid regions.

• In viscous flows, no-slip condition enforced at walls.

– Tangential fluid velocity equal to wall velocity.

– Normal velocity component is set to be zero.

• Alternatively, one can specify the shear stress. 

• Thermal boundary condition.

– Several types available.

– Wall material and thickness can be defined for 1-D or in-plane thin 

plate heat transfer calculations.

• Wall roughness can be defined for turbulent flows.

– Wall shear stress and heat transfer based on local flow field.

• Translational or rotational velocity can be assigned to wall.

Wall boundaries
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symmetry 

planes

Symmetry boundaries

• Used to reduce computational effort in problem.

• Flow field and geometry must be symmetric:

– Zero normal velocity at symmetry plane.

– Zero normal gradients of all variables at symmetry plane.

• No inputs required.

– Must take care to correctly define symmetry boundary locations.

• Also used to model slip walls in viscous flow.
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Periodic boundaries

• Used when physical geometry of interest and expected flow 

pattern and the thermal solution are of a periodically repeating 

nature.

– Reduces computational effort in problem.

• Two types available:

– Dp = 0 across periodic planes.

• Rotationally or translationally periodic.

• Rotationally periodic boundaries require axis of rotation be defined in 

fluid zone.

– Dp is finite across periodic planes.

• Translationally periodic only.

• Models fully developed conditions.

• Specify either mean Dp per period or net mass flow rate.
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Computational 

domain

Streamlines in 

a 2D tube heat 

exchanger

Flow 

direction

Translationally periodic boundaries

4 tangential 

inlets

Rotationally periodic boundaries

⚫ Dp = 0: ⚫ Dp > 0:

Periodic boundaries: examples
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AXIS 

boundary

Axis boundaries

• Used at the centerline (y=0) of a 

2-D axisymmetric grid.

• Can also be used where multiple 

grid lines meet at a point in a 3D 

O-type grid.

• No other inputs are required.
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• A fluid zone is the group of cells for which all active equations are 

solved.

• Fluid material input required.

– Single species, phase.

• Optional inputs allow setting of source terms:

– Mass, momentum, energy, etc.

• Define fluid zone as laminar flow region if modeling transitional 

flow.

• Can define zone as porous media. 

• Define axis of rotation for rotationally periodic flows.

• Can define motion for fluid zone.

Cell zones: fluid
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• Porous zone modeled as special type of fluid zone.

– Enable the porous zone option in the fluid boundary conditions 

panel.

– Pressure loss in flow determined via user inputs of resistance 

coefficients to lumped parameter model.

• Used to model flow through porous media and other “distributed” 

resistances, e.g.:

– Packed beds.

– Filter papers.

– Perforated plates.

– Flow distributors.

– Tube banks.

Porous media conditions

6. Boundary conditions



233

• For single zone problems use the rotating reference 

frame model. Define the whole zone as moving 

reference frame. This has limited applicability.

• For multiple zone problems each zone can be 

specified as having a moving reference frame:

– Multiple reference frame model. Least accurate, 

least demanding on CPU.

– Mixing plane model. Field data are averaged at 

the outlet of one zone and used as inlet 

boundary data to adjacent zone.

• Or each zone can be defined as moving mesh using 

the sliding mesh model. Must then also define 

interface. Mesh positions are calculated as a function 

of time. Relative motion must be tangential (no 

normal translation).

Moving zones
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• A solid zone is a group of cells for which only heat conduction is 

solved, and no flow equations are solved.

• The material being treated as solid may actually be fluid, but it is 

assumed that no convection takes place.

• The only required input is material type so that appropriate 

material properties are being used.

• Optional inputs allow you to set a volumetric heat generation rate 

(heat source).

• Need to specify rotation axis if rotationally periodic boundaries 

adjacent to solid zone.

• Can define motion for solid zone.

Cell zones: solid
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Internal face boundaries

• Defined on cell faces.

– Do not have finite thickness.

– Provide means of introducing step change in flow properties.

• Used to implement physical models representing:

– Fans.

– Radiators.

– Porous jumps.

– Interior walls. In that case also called “thin walls.”
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Material properties

• For each zone, a material needs to be specified.

• For the material, relevant properties need to be specified:

– Density.

– Viscosity, may be non-Newtonian.

– Heat capacity.

– Molecular weight.

– Thermal conductivity.

– Diffusion coefficients.

• Which properties need to be specified depends on the model. Not 

all properties are always required.

• For mixtures, properties may have to be specified as a function of 

the mixture composition.
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Fluid density

• For constant density, incompressible flow:  = constant.

• For compressible flow:  = pabsolute/RT.

• Density can also be defined as a function of temperature 

(polynomial, piece-wise polynomial, or the Boussinesq model 

where  is considered constant except for the buoyancy term in 

the momentum equations) or be defined with user specified 

functions.

• For incompressible flows where density is a function of 

temperature one can also use the so-called incompressible-ideal-

gas law:  = poperating/RT.

• Generally speaking, one should set poperating close to the mean 

pressure in the domain to avoid round-off errors.

• However, for high Mach number flows using the coupled solver, 

set poperating to zero.

6. Boundary conditions
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When is a problem properly specified?

• Proper specification of boundary conditions is very important.

• Incorrect boundary conditions will lead to incorrect results.

• Boundary conditions may be overspecified or underspecified.

• Overspecification occurs when more boundary conditions are 

specified than appropriate and not all conditions can hold at the 

same time. 

• Underspecification occurs when the problem is incompletely 

specified, e.g., there are boundaries for which no condition is 

specified.

• Commercially available CFD codes will usually perform a number 

of checks on the boundary condition set-up to prevent obvious 

errors from occurring.

6. Boundary conditions
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Summary

• Zones are used to assign boundary conditions.

• Wide range of boundary conditions permit flow to enter and exit 

solution domain.

• Wall boundary conditions used to bound fluid and solid regions.

• Repeating boundaries used to reduce computational effort.

• Internal cell zones used to specify fluid, solid, and porous regions.

• Internal face boundaries provide way to introduce step change in 

flow properties.

6. Boundary conditions
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Outline

• Why is a grid needed?

• Element types.

• Grid types.

• Grid design guidelines.

• Geometry.

• Solution adaption.

• Grid import.

7. Meshing
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Why is a grid needed?

• The grid:

– Designates the cells or elements on which the flow is solved.

– Is a discrete representation of the geometry of the problem.

– Has cells grouped into boundary zones where b.c.’s are applied.

• The grid has a significant impact on:

– Rate of convergence (or even lack of convergence).

– Solution accuracy.

– CPU time required.

• Importance of mesh quality for good solutions.

– Grid density.

– Adjacent cell length/volume ratios.

– Skewness.

– Tet vs. hex.

– Boundary layer mesh.

– Mesh refinement through adaption.

7. Meshing
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Geometry can be very simple... … or more complex

geometry 

for a “cube”

Geometry

• The starting point for all problems is a “geometry.”

• The geometry describes the shape of the problem to be analyzed.

• Can consist of volumes, faces (surfaces), edges (curves) and 

vertices (points).

7. Meshing
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Geometry creation

• Geometries can be created top-down or bottom-up.

• Top-down refers to an approach where the computational domain 

is created by performing logical operations on primitive shapes 

such as cylinders, bricks, and spheres.

• Bottom-up refers to an approach where one first creates vertices 

(points), connects those to form edges (lines), connects the edges 

to create faces, and combines the faces to create volumes.

• Geometries can be created using the same pre-processor 

software that is used to create the grid, or created using other 

programs (e.g., CAD, graphics).
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Typical cell shapes

• Many different cell/element and grid types are available. Choice 

depends on the problem and the solver capabilities.

• Cell or element types:

– 2D:

– 3D:

triangle 

(“tri”)

2D prism 

(quadrilateral 

or “quad”)

tetrahedron

(“tet”)

pyramid

prism with 

quadrilateral base

(hexahedron or “hex”)

prism with 

triangular base 

(wedge)

arbitrary polyhedron
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node

face

cell

face
cell

node

edge

2D computational grid

3D computational grid

cell 

center

Terminology

• Cell = control volume into which 

domain is broken up.

• Node = grid point.

• Cell center = center of a cell.

• Edge = boundary of a face.

• Face = boundary of a cell.

• Zone = grouping of nodes, faces, 

and cells:

– Wall boundary zone.

– Fluid cell zone.

• Domain = group of node, face and 

cell zones.
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Grid types: structured grid

• Single-block, structured grid.

– i,j,k indexing to locate neighboring cells.

– Grid lines must pass all through domain.

• Obviously can’t be used for very complicated geometries.

7. Meshing
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• Different types of hexahedral grids.

• Single-block.

– The mesh has to be represented in a single block.

– Connectivity information (identifying cell neighbors) for entire mesh is 

accessed by three index variables: i, j, k.  

Single-block geometry  Logical representation.

• Single-block meshes may include 180-degree corners.

+ +

+ +

Face meshing: structured grids
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Grid types: multiblock

• Multi-block, structured grid.

– Uses i,j,k indexing within each 

mesh block.

– The grid can be made up of 

(somewhat) arbitrarily-connected 

blocks.

• More flexible than single block, 

but still limited.

Source: www.cfdreview.com
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• Different types of hexahedral grids.

– Multi-block.

– The mesh can be represented in multiple blocks.

Multi-block geometry Logical representation.

– This structure gives full control of the mesh grading, using edge 

meshing, with high-quality elements.

– Manual creation of multi-block structures is usually more time-

consuming compared to unstructured meshes.

Face meshing: multiblock
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Grid types: unstructured

• Unstructured grid.

– The cells are arranged in an arbitrary fashion.

– No i,j,k grid index, no constraints on cell layout.

• There is some memory and CPU overhead for unstructured 

referencing.

Unstructured mesh on a dinosaur
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Unstructured Grid

Face meshing: unstructured grids 

• Different types of hexahedral grids.

– Unstructured.

– The mesh has no logical representation.

7. Meshing
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Face meshing: quad examples

• Quad: Map.

• Quad: Submap.

• Quad: Tri-Primitive.

• Quad: Pave and Tri-Pave. 

7. Meshing
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Grid types: hybrid

• Hybrid grid.

– Use the most appropriate cell type in any combination.

• Triangles and quadrilaterals in 2D.

• Tetrahedra, prisms and pyramids in 3D.

– Can be non-conformal: grids lines don’t need to match at block 

boundaries. 

triangular surface mesh 

on car body is quick and 

easy to create

prism layer 

efficiently resolves 

boundary layer

tetrahedral 

volume mesh 

is generated 

automatically

non-conformal 

interface
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Complex Geometries

Surface mesh for a grid 

containing only tetrahedra

Tetrahedral mesh

• Start from 3D boundary mesh 

containing only triangular faces.

• Generate mesh consisting of 

tetrahedra.
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• Flow alignment well defined in 

specific regions.

• Start from 3D boundary and 

volume mesh:

– Triangular and quadrilateral 

faces.

– Hexahedral cells.

• Generate zonal hybrid mesh, 

using:

– Tetrahedra.

– Existing hexahedra.

– Transition elements: pyramids.
Surface mesh for a grid containing 

hexahedra, pyramids, and 

tetrahedra (and prisms)

Zonal hybrid mesh
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• Parametric study of complex 

geometries.

• Nonconformal capability allows 

you to replace portion of mesh 

being changed.

• Start from 3D boundary mesh or 

volume mesh.

• Add or replace certain parts of 

mesh.

• Remesh volume if necessary. 

Nonconformal mesh 

for a valve port

Nonconformal 

interface

Nonconformal mesh
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Mesh naming conventions - topology

• Structured mesh: the mesh follows a structured i,j,k convention.

• Unstructured mesh: no regularity to the mesh.

• Multiblock: the mesh consists of multiple blocks, each of which can 

be either structured or unstructured.

7. Meshing
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Mesh naming conventions – cell type

• Tri mesh: mesh consisting entirely of triangular elements.

• Quad mesh: consists entirely of quadrilateral elements.

• Hex mesh: consists entirely of hexahedral elements.

• Tet mesh: mesh with only tetrahedral elements.

• Hybrid mesh: mesh with one of the following:

• Triangles and quadrilaterals in 2D.

• Any combination of tetrahedra, prisms, pyramids in 3D.

• Boundary layer mesh: prisms at walls and tetrahedra everywhere else.

• Hexcore: hexahedra in center and other cell types at walls.

• Polyhedral mesh: consists of arbitrary polyhedra.

• Nonconformal mesh: mesh in which grid nodes do not match up 

along an interface.
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1.  Create, read (or import) 

boundary mesh(es).

2.  Check quality of boundary mesh.

3.  Improve and repair boundary 

mesh.

4.  Generate volume mesh.

5.  Perform further refinement if 

required.

6.  Inspect quality of volume mesh.

7.  Remove sliver and degenerate 

cells.

8.  Save volume mesh.

Surface mesh for a grid 

containing only tetrahedra

Mesh generation process
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• Two phases:

– Initial mesh generation: 

Triangulate boundary mesh.

– Refinement on initial mesh: 

Insert new nodes. Initial mesh

Boundary refinement Cell zone refinement

Tri/tet grid generation process
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Mesh quality

• For the same cell count, hexahedral meshes will give more 

accurate solutions, especially if the grid lines are aligned with the 

flow.

• The mesh density should be high enough to capture all relevant 

flow features.

• The mesh adjacent to the wall should be fine enough to resolve 

the boundary layer flow. In boundary layers, quad, hex, and 

prism/wedge cells are preferred over tri’s, tets, or pyramids.

• Three measures of quality:

– Skewness.

– Smoothness (change in size).

– Aspect ratio.
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• Two common methods for 

determining skewness:

1.  Based on the equilateral 

volume:

• Skewness =

• Applies only to triangles and 

tetrahedra.

• Default method for tris and tets.

2.  Based on the deviation from a 

normalized equilateral angle:

• Skewness (for a quad) = 

• Applies to all cell and face 

shapes.

• Always used for prisms and 

pyramids.

max max min
 − −






90

90

90

90
,

min

max

optimal (equilateral) cell

actual cell

circumcircle

optimal cell size cell size

optimal cell size

−

Mesh quality: skewness
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• Common measure of quality is based on equiangle skew.

• Definition of equiangle skew:

where:

– max = largest angle in face or cell.

– min = smallest angle in face or cell.

– e = angle for equiangular face or cell.

• e.g., 60 for triangle, 90 for square.

• Range of skewness:








 −

−

−

e

mine

e

emax ,
180

max








 min

 max

0                              1

best worst

Equiangle skewness

264

7. Meshing



265

Grid design guidelines: smoothness

• Change in cell/element size should be gradual (smooth).

• Ideally, the maximum change in grid spacing should be <20%:

smooth change

in cell size
sudden change

in cell size — AVOID!

• • •

Dxi Dxi+1

2.1
x

x

i

1i 
D

D +
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• Aspect ratio is ratio of longest edge length to shortest edge length. 

Equal to 1 (ideal) for an equilateral triangle or a square. 

aspect ratio = 1         high-aspect-ratio quad

aspect ratio = 1         high-aspect-ratio triangle

Mesh quality: aspect ratio

7. Meshing



Value of

Skewness

0-0.25 0.25-0.50 0.50-0.80 0.80-0.95 0.95-0.99 0.99-1.00

Cell Quality excellent good acceptable poor sliver degenerate

Striving for quality

• A poor-quality grid will cause inaccurate solutions and/or slow 

convergence.

• Minimize equiangle skew:

– Hex and quad cells: skewness should not exceed 0.85.

– Tri’s: skewness should not exceed 0.85.

– Tets: skewness should not exceed 0.9.

• Minimize local variations in cell size:

– e.g., adjacent cells should not have ‘size ratio’ greater than 20%.

• If such violations exist: delete mesh, perform necessary 

decomposition and/or pre-mesh edges and faces, and remesh.

267
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inadequate betterflow

OK!

Grid design guidelines: resolution

• Pertinent flow features should be adequately resolved.

• Cell aspect ratio (width/height) should be near one where flow is 

multi-dimensional.

• Quad/hex cells can be stretched where flow is fully-developed and 

essentially one-dimensional.

Flow Direction
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Grid design guidelines: total cell count

• More cells can give higher accuracy. The downside is increased 

memory and CPU time.

• To keep cell-count down:

– Use a non-uniform grid to cluster cells only where they are needed.

– Use solution adaption to further refine only selected areas.

• Cell counts of the order:

– 1E4 are relatively small problems.

– 1E5 are intermediate size problems.

– 1E6 are large. Such problems can be efficiently run using multiple 

CPUs, but mesh generation and post-processing may become slow.

– 1E7 are huge and should be avoided if possible. However, they are 

common in aerospace and automotive applications.

– 1E8 and more are department of defense style applications.
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Solution adaption

• How do you ensure adequate grid resolution, when you don’t 

necessarily know the flow features? Solution-based grid adaption!

• The grid can be refined or coarsened by the solver based on the 

developing flow:

– Solution values.

– Gradients.

– Along a boundary.

– Inside a certain region.

7. Meshing



271

Grid adaption

• Grid adaption adds more cells where needed to resolve the flow 

field.

• Fluent adapts on cells listed in register. Registers can be defined 

based on:

– Gradients of flow or user-defined variables.

– Isovalues of flow or user-defined variables.

– All cells on a boundary.

– All cells in a region.

– Cell volumes or volume changes.

– y+ in cells adjacent to walls.

• To assist adaption process, you can:

– Combine adaption registers.

– Draw contours of adaption function.

– Display cells marked for adaption.

– Limit adaption based on cell size and number of cells.
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Adaption example: final grid and solution

2D planar shell - contours of pressure final grid2D planar shell - final grid
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Main sources of errors

• Mesh too coarse.

• High skewness.

• Large jumps in volume between adjacent cells.

• Large aspect ratios.

• Interpolation errors at non-conformal interfaces.

• Inappropriate boundary layer mesh.
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Summary

• Design and construction of a quality grid is crucial to the success 

of the CFD analysis.

• Appropriate choice of grid type depends on:

– Geometric complexity.

– Flow field.

– Cell and element types supported by solver.

• Hybrid meshing offers the greatest flexibility.

• Take advantage of solution adaption.

7. Meshing
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Turbulence

• What is turbulence?

• Effect of turbulence on 

Navier-Stokes equations.

• Reynolds averaging.

• Reynolds stresses.

Sketch by Leonardo DaVinci

8. Turbulence
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Instability

• All flows become unstable above a certain Reynolds number.

• At low Reynolds numbers flows are laminar.

• For high Reynolds numbers flows are turbulent.

• The transition occurs anywhere between 2000 and 1E6, 

depending on the flow.

• For laminar flow problems, flows can be solved using the 

conservation equations developed previously.

• For turbulent flows, the computational effort involved in solving 

those for all time and length scales is prohibitive.

• An engineering approach to calculate time-averaged flow fields for 

turbulent flows will be developed.

8. Turbulence
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Time

What is turbulence?

• Unsteady, aperiodic motion in which all three velocity components 

fluctuate, mixing matter, momentum, and energy.

• Decompose velocity into mean and fluctuating parts:

Ui(t)  Ui + ui(t).

• Similar fluctuations for pressure, temperature, and species 

concentration values.
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Examples of simple turbulent flows

jet mixing layer wake

• Some examples of simple turbulent flows are a jet entering a 

domain with stagnant fluid, a mixing layer, and the wake behind 

objects such as cylinders.

• Such flows are often used as test cases to validate the ability of 

computational fluid dynamics software to accurately predict fluid 

flows.

Images: Versteeg and Malalasekera [10, page 53]
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Transition

• The photographs show the flow in 

a boundary layer.

• Below Recrit the flow is laminar 

and adjacent fluid layers slide 

past each other in an orderly 

fashion. 

• The flow is stable. Viscous effects 

lead to small disturbances being 

dissipated.

• Above the transition point Recrit

small disturbances in the flow 

start to grow. 

• A complicated series of events 

takes place that eventually leads 

to the flow becoming fully 

turbulent.

Images: Homsy et al. [2] 
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Transition in boundary layer flow over flat plate

Images: Versteeg and Malalasekera [10, page 47] and Homsy et al. [2]  
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Transition in boundary layer flow over flat plate

Turbulent spots Fully turbulent flowTollmien-Schlichting 

(T-S) Waves

Images: Homsy et al. [2] 
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Turbulent boundary layer

Merging of turbulent spots and transition to turbulence 

in a natural flat plate boundary layer.

Image: Van Dyke [8]

Top view

Side view
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Turbulent boundary layer

Close-up view of the turbulent boundary layer.

Image: Van Dyke [8]
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Transition in a channel flow

• Instability and turbulence is also 

seen in internal flows such as 

channels and ducts.

• The Reynolds number is constant 

throughout the pipe and is a 

function of flow rate, fluid 

properties and diameter.

• Three flow regimes are shown:

– Re < 2200 with laminar flow.

– Re = 2200 with a flow that 

alternates between turbulent 

and laminar. This is called 

transitional flow.

– Re > 2200 with fully turbulent 

flow.

Images: Homsy et al. [2] 
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Re = 9.6 Re = 13.1

Re = 30.2 Re = 2000

Re = 26

Re = 10,000

Flow transitions around a cylinder

• For flow around a cylinder, the flow starts separating at Re = 5. For Re below 30, 

the flow is stable. Oscillations appear for higher Re.

• The separation point moves upstream, increasing drag up to Re = 2000.

Images: Van Dyke [8].
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Alexander Selkirk Island in the southern Pacific Ocean20 km

http://landsat.gsfc.nasa.gov/earthasart/vortices.html

Karman Vortices: Each of these swirling clouds is a result of a meteorological phenomenon known as 

a Karman vortex. These vortices appeared over Alexander Selkirk Island in the southern Pacific 

Ocean. Rising precipitously from the surrounding waters, the island's highest point is nearly a mile (1.6 

km) above sea level. As wind-driven clouds encounter this obstacle, they flow around it to form these 

large, spinning eddies.
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Alaska's Aleutian Islands

• As air flows over and 

around objects in its 

path, spiraling eddies, 

known as Von Karman 

vortices, may form.

• The vortices in this 

image were created 

when prevailing winds 

sweeping east across 

the northern Pacific 

Ocean encountered 

Alaska's Aleutian 

Islands

http://landsat.gsfc.nasa.gov/earthasart/vonkar.html
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These Karman vortices formed over the islands of 

Broutona, Chirpoy, and Brat Chirpoyev ("Chirpoy's 

Brother"), all part of the Kuril Island chain found between 

Russia's Kamchatka Peninsula and Japan. 

http://landsat.gsfc.nasa.gov/earthasart/karman.html
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Transition in a jet flow

Image: Versteeg and Malalasekera [10, page 46]
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Large Structure Small Structure

Large-scale vs. small-scale structure

Image: Van Dyke [8]

8. Turbulence



292

Smoke ring

A smoke ring (green) impinges on a plate where it interacts with the slow moving

smoke in the boundary layer (pink). The vortex ring stretches and new rings form.

The size of the vortex structures decreases over time.

Images: Homsy et al. [2] 
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Simulation – species mixing
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Homogeneous, decaying, grid-generated turbulence

Turbulence is generated at the grid as a result of high stresses in the immediate vicinity of the grid. 

The turbulence is made visible by injecting smoke into the flow at the grid. The eddies are visible 

because they contain the smoke. Beyond this point, there is no source of turbulence as the flow is 

uniform. The flow is dominated by convection and dissipation. For homogeneous decaying 

turbulence, the turbulent kinetic energy decreases with distance from grid as x-1 and the turbulent 

eddies grows in size as x1/2. Image: Van Dyke [8]
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Turbulence: high Reynolds numbers

Turbulent flows always occur at high Reynolds numbers. They are caused by 

the complex interaction between the viscous terms and the inertia terms in the 

momentum equations.

Laminar, low Reynolds number 

free stream flow

Turbulent, high Reynolds 

number jet
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Turbulent flows are chaotic

One characteristic of turbulent flows is their irregularity or randomness. A 

full deterministic approach is very difficult. Turbulent flows are usually 

described statistically. Turbulent flows are always chaotic. But not all chaotic 

flows are turbulent.
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Turbulence: diffusivity

The diffusivity of turbulence causes rapid mixing and increased rates of 

momentum, heat, and mass transfer. A flow that looks random but does not 

exhibit the spreading of velocity fluctuations through the surrounding fluid is 

not turbulent. If a flow is chaotic, but not diffusive, it is not turbulent. 
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Turbulence: dissipation

Turbulent flows are dissipative. Kinetic energy gets converted into 

heat due to viscous shear stresses. Turbulent flows die out quickly 

when no energy is supplied. Random motions that have insignificant 

viscous losses, such as random sound waves, are not turbulent.
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Turbulence: rotation and vorticity

Turbulent flows are rotational; that is, they have non-zero vorticity. 

Mechanisms such as the stretching of three-dimensional vortices play a key 

role in turbulence.

Vortices

8. Turbulence
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What is turbulence?

• Turbulent flows have the following characteristics*:
– One characteristic of turbulent flows is their irregularity or randomness. A 

full deterministic approach is very difficult. Turbulent flows are usually 
described statistically. Turbulent flows are always chaotic. But not all chaotic 
flows are turbulent. Waves in the ocean, for example, can be chaotic but are 
not necessarily turbulent.

– The diffusivity of turbulence causes rapid mixing and increased rates of 
momentum, heat, and mass transfer. A flow that looks random but does not 
exhibit the spreading of velocity fluctuations through the surrounding fluid is 
not turbulent. If a flow is chaotic, but not diffusive, it is not turbulent. The trail 
left behind a jet plane that seems chaotic but does not diffuse for miles is 
then not turbulent.

– Turbulent flows always occur at high Reynolds numbers. They are caused 
by the complex interaction between the viscous terms and the inertia terms 
in the momentum equations. 

– Turbulent flows are rotational; that is, they have non-zero vorticity. 
Mechanisms such as the stretching of three-dimensional vortices play a key 
role in turbulence.

* Tennekes and Lumley [7]
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What is turbulence? - Continued

– Turbulent flows are dissipative. Kinetic energy gets converted into 

heat due to viscous shear stresses. Turbulent flows die out quickly 

when no energy is supplied. Random motions that have insignificant 

viscous losses, such as random sound waves, are not turbulent.

– Turbulence is a continuum phenomenon. Even the smallest eddies 

are significantly larger than the molecular scales. Turbulence is 

therefore governed by the equations of fluid mechanics.

– Turbulent flows are flows. Turbulence is a feature of fluid flow, not 

of the fluid.  When the Reynolds number is high enough, most of the 

dynamics of turbulence are the same whether the fluid is an actual 

fluid or a gas. Most of the dynamics are then independent of the 

properties of the fluid.
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Kolmogorov energy spectrum

• Energy cascade, from large-
scale to small-scale.

• E is energy contained in 
eddies of wavelength l.

• Length scales:

– Largest eddies. Integral 
length scale (k3/2/). 

– Length scales at which 
turbulence is isotropic. 
Taylor microscale 
(15nu’2/)1/2.

– Smallest eddies. 
Kolmogorov length scale 
(n3/)1/4. These eddies have 
a velocity scale (n.)1/4 and a 
time scale (n/)1/2.

2 3

2 2

2

is the energy dissipation rate (m /s )

is the turbulent kinetic energy (m /s )

is the kinematic viscosity (m /s)

k



n

Integral 

scale Taylor scale

Kolmogorov 

scale

Wavenumber

Log E
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Vorticity and vortex stretching

• Existence of eddies implies rotation or vorticity.

• Vorticity concentrated along contorted vortex lines or bundles. 

• As end points of a vortex line move randomly further apart the vortex line 
increases in length but decreases in diameter. Vorticity increases 
because angular momentum is nearly conserved. Kinetic energy 
increases at rate equivalent to the work done by large-scale motion that 
stretches the bundle.

• Viscous dissipation in the smallest eddies converts kinetic energy into 
thermal energy.

• Vortex-stretching cascade process maintains the turbulence and 
dissipation is approximately equal to the rate of production of turbulent 
kinetic energy.

• Typically, energy gets transferred from the large eddies to the smaller 
eddies. However, sometimes smaller eddies can interact with each other 
and transfer energy to the (i.e., form) larger eddies, a process known as 
backscatter.
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t2
t3

t4 t5 t6

t1

Images: Baldyga and Bourne [12]

Vortex stretching
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External flows:

Internal flows:

Natural convection:

5105xRe along a surface

around an obstacle

where



UL
ReL where

Other factors such as free-stream 

turbulence, surface conditions, and 

disturbances may cause earlier 

transition to turbulent flow.

L = x, D, Dh, etc.

Re Dh
≥ ∼ 2,200

108 1010 −Ra


 3TLg
Ra

D


 20,000DRe

Is the flow turbulent?
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Turbulence modeling objective

• The objective of turbulence modeling is to develop equations that 

will predict the time-averaged velocity, pressure, and  temperature 

fields without calculating the complete turbulent flow pattern as a 

function of time.

– This saves us a lot of work!

– Most of the time it is all we need to know.

– We may also calculate other statistical properties, such as RMS 

values. 

• Important to understand: the time averaged flow pattern is a 

statistical property of the flow. 

– It is not an existing flow pattern!

– It does not usually satisfy the steady Navier-Stokes equations!

– The flow never actually looks that way!!
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Experimental Snapshot (Van Dyke [8])

Example: flow around a cylinder at Re=1E4

• The figures show:

– An experimental snapshot.

– Streamlines for time averaged 

flow field. Note the difference 

between the time averaged and 

the instantaneous flow field.

– Effective viscosity used to 

predict time averaged flow field.

Effective Viscosity
Streamlines

307
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Velocity decomposition

• Velocity and pressure decomposition:

• Turbulent kinetic energy k (per unit mass) is defined as:

• Continuity equation:

• Next step, time average the momentum equation. This results in 

the Reynolds equations.
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• These equations contain an additional stress tensor. These are 
called the Reynolds stresses.

• In turbulent flow, the Reynolds stresses are usually large compared 
to the viscous stresses.

• The normal stresses are always non-zero because they contain 
squared velocity fluctuations. The shear stresses would be zero if 
the fluctuations were statistically independent. However, they are 
correlated (amongst other reasons because of continuity) and the 
shear stresses are therefore usually also non-zero.

Reynolds stresses

2

2

2

' ' ' ' '

' ' ' ' '
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• Continuity:

• Scalar transport equation:

• Notes on density:

– Here  is the mean density.

– This form of the equations is suitable for flows where changes in the 

mean density are important, but the effect of density fluctuations on 

the mean flow is negligible.

– For flows with Ti<5% this is up to Mach 5 and with Ti<20% this is 

valid up to around Mach 1.
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Closure modeling

• The time averaged equations now contain six additional unknowns 

in the momentum equations.

• Additional unknowns have also been introduced in the scalar 

equation.

• Turbulent flows are usually quite complex, and there are no simple 

formulae for these additional terms.

• The main task of turbulence modeling is to develop computational 

procedures of sufficient accuracy and generality for engineers to 

be able to accurately predict the Reynolds stresses and the scalar 

transport terms.

• This will then allow for the computation of the time averaged flow 

and scalar fields without having to calculate the actual flow fields 

over long time periods.
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Lecture 9 - Kolmogorov’s Theory

Applied Computational Fluid Dynamics

André Bakker



Eddy size

• Kolmogorov’s theory describes 

how energy is transferred from 

larger to smaller eddies; how 

much energy is contained by 

eddies of a given size; and how 

much energy is dissipated by 

eddies of each size.

• We will derive three main turbulent 

length scales: the integral scale, 

the Taylor scale, and the 

Kolmogorov scale; and 

corresponding Reynolds numbers.

• We will also discuss the concept of 

energy and dissipation spectra.

315This lecture closely follows Pope [4] and Tennekes and Lumley [7]

The book by Tennekes and Lumley features 

a  sketch by Leonardo DaVinci on its cover.
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Jets at two different Reynolds numbers

Relatively low Reynolds number

Relatively high Reynolds number

Images: Tennekes & Lumley. [12, page 22]
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Turbulent eddies

• Consider fully turbulent flow at high Reynolds number Re=UL/n.

• Turbulence can be considered to consist of eddies of different sizes. 

• An ‘eddy’ preludes precise definition, but it is conceived to be a turbulent motion, 

localized over a region of size l, that is at least moderately coherent over this 

region.

• The region occupied by a larger eddy can also contain smaller eddies.

• Eddies of size l have a characteristic velocity u(l) and timescale t(l)  l/u(l).

• Eddies in the largest size range are characterized by the lengthscale l0 which is 

comparable to the flow length scale L.

• Their characteristic velocity u0u(l0) is on the order of the r.m.s. turbulence 

intensity u’ (2k/3)1/2 which is comparable to U.

• Here the turbulent kinetic energy is defined as: 

• The Reynolds number of these eddies Re0 u0l0/n is therefore large (comparable 

to Re) and the direct effects of viscosity on these eddies are negligibly small.

)'''( 222
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Integral scale

• We can derive an estimate of the lengthscale l0 of the larger eddies 

based on the following:

– Eddies of size l0 have a characteristic velocity u0 and timescale t0  l0/u0

– Their characteristic velocity u0u(l0) is on the order of the r.m.s. turbulence 

intensity u’ (2k/3)1/2

– Assume that energy of eddy with velocity scale u0 is dissipated in time t0

• We can then derive the following equation for this length scale:

• Here, (m2/s3) is the energy dissipation rate. The proportionality constant 

is of the order one. This lengthscale is usually referred to as the integral 

scale of turbulence.

• The Reynolds number associated with these large eddies is referred to 

as the turbulence Reynolds number ReL, which is defined as:

3/ 2

0

k
l




1/ 2 2

0ReL

k l k

n n
= =
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Energy transfer

• The large eddies are unstable and break up, transferring their 

energy to somewhat smaller eddies.

• These smaller eddies undergo a similar break-up process and 

transfer their energy to yet smaller eddies.

• This energy cascade – in which energy is transferred to 

successively smaller and smaller eddies – continues until the 

Reynolds number Re(l) u(l)l/n is sufficiently small that the eddy 

motion is stable, and molecular viscosity is effective in dissipating 

the kinetic energy.

• At these small-scales, the kinetic energy of turbulence is converted 

into heat.
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Richardson

• L.F. Richardson (“Weather Prediction by Numerical Process.” 

Cambridge University Press, 1922, [6]) summarized this in the 

following often cited verse:

Big whirls have little whirls
Which feed on their velocity;
And little whirls have lesser whirls,
And so on to viscosity

in the molecular sense.

Based on a poem by Augustus de Morgan (1872)

“Great fleas have little fleas …”
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Dissipation

• Note that dissipation takes place at the end of the sequence of 

processes.

• The rate of dissipation  is determined, therefore by the first 

process in the sequence, which is the transfer of energy from the 

largest eddies.

• These eddies have energy of order u0
2 and timescale t0 =l0/u0 so 

the rate of transfer of energy can be supposed to scale as 

u0
2/t0= u0

3 /l0

• Consequently, consistent with experimental observations in free 

shear flows, this picture of the energy cascade indicates that  is 

proportional to u0
3/l0 independent of n (at high Reynolds numbers).
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Kolmogorov’s theory

• Many questions remain unanswered. 

– What is the size of the smallest eddies that are responsible for 

dissipating the energy? 

– As l decreases, do the characteristic velocity and timescales u(l) and 

t(l) increase, decrease, or stay the same? The assumed decrease of 

the Reynolds number u0l0/n by itself is not sufficient to determine 

these trends.

• These and others are answered by Kolmogorov’s theory of 

turbulence (1941, see Pope (2000)).

• Kolmogorov’s theory was first published in 1941 (“K41 theory”) 

with later papers in 1962.

• Kolmogorov’s theory is based on three important hypotheses 

combined with dimensional arguments and experimental 

observations.
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Kolmogorov’s hypothesis of local isotropy

• For homogenous turbulence, the turbulent kinetic energy k is the 
same everywhere. For isotropic turbulence the eddies also behave 
the same in all directions:

• Kolmogorov argued that the directional biases of the large-scales 
are lost in the chaotic scale-reduction process as energy is 
transferred to successively smaller eddies.

• Hence Kolmogorov’s hypothesis of local isotropy states that at 
sufficiently high Reynolds numbers, the small-scale turbulent motions 

(l << l0) are statistically isotropic.

• Here, the term local isotropy means isotropy at small-scales. large-
scale turbulence may still be anisotropic.

• lEI is the length scale that forms the demarcation between the 
large-scale anisotropic eddies  (l>lEI) and the small-scale isotropic 
eddies (l<lEI). For many high Reynolds number flows lEI can be 
estimated as lEI  l0/6.

2 2 2' ' 'u v w= =
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Kolmogorov’s first similarity hypothesis

• Kolmogorov also argued that not only does the directional 
information get lost as the energy passes down the cascade, but 
that all information about the geometry of the eddies gets lost also.

• As a result, the statistics of the small-scale motions are universal: 
they are similar in every high Reynolds number turbulent flow, 
independent of the mean flow field and the boundary conditions.

• These small-scale eddies depend on the rate TEI at which they 
receive energy from the larger scales (which is approximately 
equal to the dissipation rate ) and the viscous dissipation, which 
is related to the kinematic viscosity n.

• Kolmogorov’s first similarity hypothesis states that in every turbulent 
flow at sufficiently high Reynolds number, the statistics of the small-scale 
motions (l<lEI) have a universal form that is uniquely determined by 
and n.
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Universal equilibrium range

• The size range (l<lEI) is referred to as the universal equilibrium 

range.

• In this range, the timescales l/u(l) are small compared to l0/u0 so 

that the small eddies can adapt quickly to maintain dynamic 

equilibrium with the energy transfer rate TEI imposed by the large 

eddies.

• On these scales all high Reynolds number flow fields are 

statistically identical if the flow fields are scaled by the Kolmogorov 

scales.
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Kolmogorov scales

• Given the two parameters  and n we can form the following unique 
length, velocity, and time scales:

• These scales are indicative of the smallest eddies present in the flow, the 
scale at which the energy is dissipated.

• Note that the fact that the Kolmogorov Reynolds number Re of the small 
eddies is 1, is consistent with the notion that the cascade proceeds to 
smaller and smaller scales until the Reynolds number is small enough for 
dissipation to be effective.
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Kolmogorov scales - derivation
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Ratio between large and small-scales

• When we use the relationship l0 ~ k3/2/ and substitute it in the 

equations for the Kolmogorov scales, we can calculate the ratios 

between the small-scale and large-scale eddies.

• As expected, at high Reynolds numbers, the velocity and 

timescales of the smallest eddies are small compared to those of 

the largest eddies.

• Since /l0 decreases with increasing Reynolds number, at high 

Reynolds number there will be a range of intermediate scales l

which is small compared to l0 and large compared with .
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Kolmogorov’s second similarity hypothesis

• Because the Reynolds number of the intermediate scales l is 
relatively large, they will not be affected by the viscosity n.

• Based on that, Kolmogorov’s second similarity hypothesis states 
that in every turbulent flow at sufficiently high Reynolds number, the 
statistics of the motions of scale l in the range l0 >> l >>  have a 
universal form that is uniquely determined by  independent of n.

• We introduce a new length scale lDI, (with  lDI  60 for many 
turbulent high Reynolds number flows) so that this range can be 
written as lEI > l > lDI

• This length scale splits the universal equilibrium range into two 
subranges:

– The inertial subrange (lEI > l > lDI) where motions are determined by 
inertial effects and viscous effects are negligible.

– The dissipation range (l < lDI) where motions experience viscous 
effects.
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Eddy sizes in the inertial subrange

• For eddies in the inertial subrange of size l, using:

and the previously shown relationships between the turbulent 

Reynolds number and various scales, velocity scales and 

timescales can be formed from  and l:

• A consequence, then, of the second similarity hypothesis is that in 

the inertial subrange the velocity scales and timescales u(l) and 

t(l) decrease as l decreases.
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Taylor microscale

• The energy dissipation rate  is given by the following equation, 
which comes from the analytically derived conservation equation 
for turbulent kinetic energy:

• The lower case indicates the fluctuating components. The 
dissipation rate depends on the viscosity and velocity gradients 
(“shear”) in the turbulent eddies.

• Working out this equation further for isotropic turbulence (mainly 
bookkeeping for all the terms) results in:

• We can now define the Taylor microscale l as follows:
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Taylor microscale - continued

• This then results in the following relationship for the Taylor 

microscale l:

• From k = (1/2)(u’2+v’2+w’2) we can derive k = (2/3)u’2, and:

• The Taylor microscale falls in between the large-scale eddies and 

the small-scale eddies, which can be seen by calculating the ratios 

between l and l0 and :

2 215 ' /u n l=

1/ 2(10 / )kl n 

1/ 2

0

3/ 4

0

1/ 4

2 /3 1/3

0

/ 10 Re

/ Re

/ 10 Re

10

L

L

L

l

l

l

l



l 

l 

−

−

=

=

=

=

9. Kolmogorov's theory



333

Taylor-scale Reynolds number

• A commonly used quantity in the characterization of turbulence is 

the Taylor-scale Reynolds number Rl.

• This is based on the length scale l and the corresponding velocity 

scale:

• Rl can be related to the turbulence Reynolds number as follows:

• We can also relate the timescale of the eddies of length scale l to 

the Kolmogorov timescale:

' /R ul l n=
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Taylor scales

• The eddy size in the inertial subrange is given by the Taylor 

microscale l:

• A commonly used quantity in the characterization of turbulence is 

the Taylor-scale Reynolds number Rl.

• This is based on the length scale l and the corresponding velocity 

scale:

• Rl can be related to the turbulence Reynolds number as follows:
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Eddy sizes

• The bulk of the energy is contained in the larger eddies in the size 

range lEI = l0/6 < l < 6l0, which is therefore called the energy-

containing range.

• The suffixes EI and DI indicate that lEI is the demarcation line 

between energy (E) and inertial (I) ranges, as lDI is that between 

the dissipation (D) and inertial (I) ranges.

Inertial subrangeDissipation range

Energy

containing

range

Universal equilibrium range

 lDI lEI l0 L

Kolmogorov 

length scale

Taylor  

microscale

Integral

length scale
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Energy transfer rate

• The rate at which energy is transferred from the larger scales to 

the smaller scales is T(l). 

• Under the equilibrium conditions in the inertial subrange this is 

equal to the dissipation rate  and is proportional to u(l)2/t.

Inertial 

subrange

Dissipation 

Energy

containing

range

Dissipation 

range

 lDI lEI l0 L

Production P

T(l)

Transfer of energy to

successively smaller scales
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Wavenumbers

• The wavenumber  is defined as  = 2/l.

• The different ranges can be shown as a function of wavenumber.

• The wavenumber can also be made non-dimensional by multiplying it with the 
Kolmogorov length scale  to result in the commonly used dimensionless group 
( ).

Universal equilibrium range

 0

= 2/l0

 EI
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 
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Energy
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DI
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
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Non dimensional form
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Energy spectrum

• The turbulent kinetic energy k is given by:

• It remains to be determined how the turbulent kinetic energy is 

distributed among the eddies of different sizes. 

• This is usually done by considering the energy spectrum E().

• Here E() is the energy contained in eddies of size l and 

wavenumber , defined as  = 2/l.

• By definition k is the integral of E() over all wavenumbers:

• The energy contained in eddies with wavenumbers between A

and B is then:
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E() in inertial subrange

• We will develop an equation for E() in the inertial subrange.

• According to the second similarity hypothesis E() will solely 
depend on  and .

• We can then perform the following dimensional analysis:

• The last equation describes the famous Kolmogorov –5/3 
spectrum. C is the universal Kolmogorov constant, which 
experimentally was determined to be C = 1.5.
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Full spectrum E()

• Model equations for E() in the production range and dissipation 
range have been developed. We will not discuss the theory behind 
them here.

• The full spectrum is given by:

• Will not discuss fL and f here.
 ffCE
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Full spectrum E()

• Model equations for E() in the production range and dissipation 
range have been developed. We will not discuss the theory behind 
them here.

• The full spectrum is given by:

• The production range is governed by fL (which goes to unity for 
large ( l0):

• The dissipation range is governed by f (which goes to unity for 
small ( ):

• The model constants were determined experimentally and based 
on the constraint that E() integrate to k. Their values are:
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Normalized spectrum

• For given values of , n, and k the full spectrum can now be 

calculated based on these equations.

• It is, however, common to normalize the spectrum in one of two 

ways: based on the Kolmogorov scales or based on the integral 

length scale.

• Based on Kolmogorov scale:

– Measure of length scale becomes ( ).

– E() is made dimensionless as E()/( u
2)

• Based on integral scale:

– Measure of length scale becomes (l0 ).

– E() is made dimensionless as E()/(k l0)

• Instead of having three adjustable parameters (,n,k), the 

normalized spectrum then has only one adjustable parameter: Rl.
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The normalized energy spectrum for Rl = 500
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The energy spectrum as a function of Rl
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The energy spectrum as a function of Rl
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Measurements of spectra The figure shows experimentally 

measured one dimensional spectra (one 

velocity component was measured only, 

as indicated by the “1” and “11” 

subscripts). The number at the end of the 

reference denotes the value of Rl for 

which the measurements were done. 

Source: Pope, page 235. 

Determination of the spectrum requires 

simultaneous measurements of all 

velocity components at multiple points, 

which is usually not possible. It is 

common to measure one velocity 

component at one point over a certain 

period of time and convert the time 

signal to a spatial signal using x = Ut 

with U being the time averaged velocity. 

This is commonly referred to as Taylor’s 

hypothesis of frozen turbulence. It is 

only valid for u’/U << 1, which is not 

always the case. Spectrum measurements 

remain a challenging field of research.
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Energy containing range

• From the energy spectrum, we can derive which length scales 

contain most of the turbulent kinetic energy in the flow. 

• The derivation will not be reproduced here. 

• The conclusion is that most of  the energy (~80%) is contained in 

eddies of length scale lEI = l0/6 < l < 6l0.
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The dissipation rate spectrum

• We now know which eddies contain most of the energy. The 

question remains, which eddies exactly dissipate the energy.

• This question can be answered by constructing a dissipation rate 

spectrum D(). The integral of D() over the full wavelength range 

is by definition the energy dissipation rate :

• Furthermore, with  being defined as the multiple of the kinematic 

viscosity and squared velocity gradients (of order n(du/dx)2 ~ nk/l2

~ nk2 ~ n2E()) we can then deduce:
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Dissipation rate spectrum - continued

• This then leads to the following:

• Here (0,) is the cumulative dissipation; the energy dissipated by 

eddies with a wavelength between 0 and .

• The unit of D() is m3/s3 and it can thus be normalized with a 

velocity scale cubed, typically the Kolmogorov velocity scale.

• Just as the normalized E() only depended on Rl, so does the 

normalized D() depend only on Rl.
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The dissipation rate spectrum

• We now know which eddies contain most of the energy. The 

question remains, which eddies exactly dissipate the energy.

• This question can be answered by constructing a dissipation rate 

spectrum D(). The integral of D() over the full wavelength range 

is by definition the energy dissipation rate :

• The unit of D() is m3/s3 and it can thus be normalized with a 

velocity scale cubed, typically the Kolmogorov velocity scale.

• Just as the normalized E() only depended on Rl, so does the 

normalized D() depend only on Rl.
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Dissipation rate spectrum

The normalized dissipation 

rate spectrum (solid line) and 

cumulative dissipation rate 

(dashed line) for Rl = 600.
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Dissipation range

• The dissipation rate spectrum can be integrated to show that 
most of the dissipation (~90%) occurs in eddies of length scales 
lDI/ = 60 > l/ > 8.

• This means that most of the dissipation occurs at scales that are 
larger than the Kolmogorov scale . The Kolmogorov scale 
should be interpreted as a measure of the smallest eddies that 
are present in a turbulent flow at high Reynolds numbers.

• How long does it take for a large-scale eddy to break up and be 
dissipated? The spectra can be further analyzed to show that 
eddies spend about 90% of their total lifetime t=k/ in the 
production range, and that once eddies enter the inertial 
subrange it takes only about t/10 before the energy is being 
dissipated. This time t/10 is also referred to as the cascade 
timescale.
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Intermittency

• Neither k nor  are constant in time or space.

• Within a turbulent flow field, k and  may vary widely in space, 

sometimes by orders of magnitude.

• Also, at a given point in space the instantaneous values of  may 

vary in time. This is called intermittency. The peak values of 

relative to the mean tend to increase with Reynolds number. Peak 

values may be of the order of 15 times the average  in laboratory 

scale flows and 50 times the average in atmospheric flows.
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Summary – Reynolds numbers

• The following Reynolds numbers have been defined:

– Flow Reynolds number:

– Turbulence Reynolds number:

– Taylor Reynolds number:

– Kolmogorov Reynolds number:

• The flow Reynolds number is on the order of one to ten times the 

turbulence Reynolds number.

• The turbulence and Taylor Reynolds numbers can be related as 

follows:

Re / 1u  n= =
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Summary – length scales

• The integral length scale is a measure of the large-scale eddies in 

the production range:

The proportionality constant is of the order one.

• The Taylor microscale is a measure of the size of the eddies in the 

inertial subrange:

• The Kolmogorov microscale is the size of the smallest eddies 

present in the flow:

• The length scales can be related as follows:
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Validity of Kolmogorov’s theory

• Kolmogorov’s theory is an asymptotic theory: it has been shown to work 
well in the limit of very high Reynolds numbers.

• The exact shape of the normalized spectra may deviate from 
Kolmogorov’s model spectra for intermediate Reynolds numbers. e.g., for 
many laboratory scale flows which have Reynolds numbers on the order 
of 10,000 with Rl ~ 250, the exponent of E() ~ -p in the inertial 
subrange is often measured to be p ~ 1.5 instead of 5/3 (~1.67).

• Kolmogorov’s theory assumes that the energy cascade is one way: from 
large eddies to small eddies. Experimental studies have shown that 
energy is also transferred from smaller scales to larger scales (a process 
called backscatter), albeit at a much lower rate and the dominant energy 
transfer is indeed from large to small.

• The theory assumes that turbulence at high Reynolds numbers is 
completely random. In practice, large-scale coherent structures may form.

• Research into the fundamental aspects of turbulence continues, both 
experimentally and by means of large computer simulations using DNS 
(direct numerical simulation); and the theory continues to be refined. 
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Turbulence modeling objective

• The objective of turbulence modeling is to develop equations that 

will predict the time-averaged velocity, pressure, and  temperature 

fields without calculating the complete turbulent flow pattern as a 

function of time.

– This saves us a lot of work!

– Most of the time it is all we need to know.

– We may also calculate other statistical properties, such as RMS values.

• The time averaged equations now contain six additional unknowns 

in the momentum equations: the Reynolds stresses. Additional 

unknowns have also been introduced in the scalar equation.
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Turbulence models

• A turbulence model is a computational procedure to close the 
system of mean flow equations.

• For most engineering applications it is unnecessary to resolve the 
details of the turbulent fluctuations. 

• Turbulence models allow the calculation of the mean flow without 
first calculating the full time-dependent flow field.

• We only need to know how turbulence affected the mean flow.

• In particular we need expressions for the Reynolds stresses.

• For a turbulence model to be useful it:

– must have wide applicability,

– be accurate,

– simple,

– and economical to run.
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Common turbulence models

• Classical models. Based on Reynolds Averaged Navier-Stokes 
(RANS) equations (time averaged):

– 1. Zero-equation* model: mixing length model.

– 2. One-equation model: Spalart-Almaras.

– 3. Two-equation models: k- style models (standard, RNG, 
realizable), k- model, and ASM.

– 4. Seven-equation model: Reynolds stress model.

• The number of equations denotes the number of additional PDEs 
that are being solved.

• Large eddy simulation. Based on space-filtered equations. Time 
dependent calculations are performed. Large eddies are explicitly 
calculated. For small eddies, their effect on the flow pattern is 
taken into account with a “subgrid model” of which many styles are 
available.

* Really, we only count PDEs, not algebraic equations.
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Prediction Methods

l  = l/ReL
3/4

Direct numerical simulation (DNS) 

Large eddy simulation (LES)

Reynolds averaged Navier-Stokes equations (RANS)
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Boussinesq hypothesis

• Many turbulence models are based upon the Boussinesq 

hypothesis.

– It was experimentally observed that turbulence decays unless there 

is shear in isothermal incompressible flows.

– Turbulence was found to increase as the mean rate of deformation 

increases.

– Boussinesq proposed in 1877 that the Reynolds stresses could be 

linked to the mean rate of deformation.

• Using the suffix notation where i, j, and k denote the x-, y-, and z-

directions respectively, viscous stresses are given by:

• Similarly, link Reynolds stresses to the mean rate of deformation:
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Turbulent viscosity

• A new quantity appears: the turbulent viscosity t.

• Its unit is the same as that of the molecular viscosity: Pa.s.

• It is also called the eddy viscosity.

• We can also define a kinematic turbulent viscosity: nt = t/. Its unit 

is m2/s.

• The turbulent viscosity is not homogeneous, i.e., it varies in space.

• It is, however, assumed to be isotropic. It is the same in all 

directions. This assumption is valid for many flows, but not for all 

(e.g., flows with strong separation or swirl).
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• The turbulent viscosity is used to close the momentum equations.

• We can use a similar assumption for the turbulent fluctuation terms 

that appear in the scalar transport equations.

• For a scalar property (t) = F + ’(t):

• Here  t is the turbulent diffusivity.

• The turbulent diffusivity is calculated from the turbulent viscosity, 

using a model constant called the turbulent Schmidt number (AKA 

Prandtl number) t:

• Experiments have shown that the turbulent Schmidt number is 

nearly constant with typical values between 0.7 and 1.
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Flow around a cylinder

• The flow is stable for Reynolds numbers below ~40.

• For higher Reynolds numbers the flow is unstable.

• This figure shows an instantaneous flow pattern at Re = 1000.
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Time average streamlines (kg/s) - Re = 1000
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Effective viscosity (kg/m-s) - Re =1000

10. Turbulence models



Time averaged velocity – Re = 1E4
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Effective viscosity – Re = 1E4
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Time averaged velocity – Re = 1E7
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Effective viscosity – Re = 1E7
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Predicting the turbulent viscosity

• The following models can be used to predict the turbulent 

viscosity:

– Mixing length model. 

– Spalart-Allmaras model.

– Standard k- model.

– k- RNG model.

– Realizable k- model.

– k- model.

• We will discuss these one by one.
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Mixing length model

• On dimensional grounds one can express the kinematic turbulent 
viscosity as the product of a velocity scale and a length scale:

• If we then assume that the velocity scale is proportional to the 
length scale and the gradients in the velocity (shear rate, which 
has dimension 1/s):

we can derive Prandtl’s (1925) mixing length model:

• Algebraic expressions exist for the mixing length for simple 2-D 
flows, such as pipe and channel flow.
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Mixing length model discussion

• Advantages:

– Easy to implement.

– Fast calculation times.

– Good predictions for simple flows where experimental correlations 

for the mixing length exist.

• Disadvantages:

– Completely incapable of describing flows where the turbulent length 

scale varies, i.e., anything with separation or circulation.

– Only calculates mean flow properties and turbulent shear stress.

• Use:

– Sometimes used for simple external aero flows.

– Pretty much completely ignored in commercial CFD programs today.

• Much better models are available.
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Spalart-Allmaras one-equation model

• Solves a single conservation equation (PDE) for the turbulent 

viscosity:

– This conservation equation contains convective and diffusive 

transport terms, as well as expressions for the production and 

dissipation of nt.

– Developed for use in unstructured codes in the aerospace industry. 

• Economical and accurate for:

– Attached wall-bounded flows.

– Flows with mild separation and recirculation.

• Weak for:

– Massively separated flows.

– Free shear flows.

– Decaying turbulence.

• Because of its relatively narrow use we will not discuss this model 

in detail.
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The k-ε model

• The k-ε model focuses on the mechanisms that affect the turbulent 

kinetic energy (per unit mass) k. 

• The instantaneous kinetic energy k(t) of a turbulent flow is the sum 

of mean kinetic energy K and turbulent kinetic energy k:

• ε is the dissipation rate of k.

• If k and ε are known, we can model the turbulent viscosity as:

• We now need equations for k and ε.
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Turbulent kinetic energy k

• The equation for the turbulent kinetic energy k is as follows:

• Here eij’ is fluctuating component of rate of deformation tensor.

• This equation can be read as:

– (I) the rate of change of k, plus

– (II) transport of k by convection, equals

– (III) transport of k by pressure, plus

– (IV) transport of k by viscous stresses, plus

– (V) transport of k by Reynolds stresses, minus

– (VI) rate of dissipation of k, plus

– (VII) turbulence production.
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Model equation for k

• The equation for k contains additional turbulent fluctuation terms, 

that are unknown. Again, using the Boussinesq assumption, these 

fluctuation terms can be linked to the mean flow.

• The following (simplified) model equation for k is commonly used.

• The Prandtl number σk connects the diffusivity of k to the eddy 

viscosity. Typically, a value of 1.0 is used.
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Turbulent dissipation

• The equations look quite similar.

• However, the k equation mainly contains primed quantities, 

indicating that changes in k are mainly governed by turbulent 

interactions.

• Furthermore, term (VII) is equal in both equations. But it is actually 

negative in the K equation (destruction) and positive in the k

equation: energy transfers from the mean flow to the turbulence.

• The viscous dissipation term (VI) in the k equation

describes the dissipation of k because of the work done by the 

smallest eddies against the viscous stresses.

• We can now define the rate of dissipation per unit mass ε as:
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Dissipation rate - analytical equation

• The analytical equation for  is shown below. Because of the many 

unknown higher order terms, this equation cannot be solved, and 

simplified model equations need to be derived.
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• A model equation for ε is derived by multiplying the k equation by 

(ε/k) and introducing model constants.

• The following (simplified) model equation for ε is commonly used.

• The Prandtl number σε connects the diffusivity of ε to the eddy 

viscosity. Typically, a value of 1.30 is used.

• Typically values for the model constants C1ε and C2ε of 1.44 and 

1.92 are used. 

Model equation for ε
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Calculating the Reynolds stresses from k and ε

• The turbulent viscosity is calculated from:

• The Reynolds stresses are then calculated as follows:

• The (2/3)ρkδij term ensures that the normal stresses sum to k.

• Note that the k-ε model leads to all normal stresses being equal, 

which is usually inaccurate.
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k-ε model discussion

• Advantages:

– Relatively simple to implement.

– Leads to stable calculations that converge relatively easily.

– Reasonable predictions for many flows.

• Disadvantages:

– Poor predictions for:

• swirling and rotating flows,

• flows with strong separation,

• axisymmetric jets,

• certain unconfined flows, and

• fully developed flows in non-circular ducts.

– Valid only for fully turbulent flows.

– Simplistic ε equation.
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More two-equation models

• The k-ε model was developed in the early 1970s. Its strengths as 

well as its shortcomings are well documented.

• Many attempts have been made to develop two-equation models 

that improve on the standard k-ε model.

• We will discuss some here:

– k-ε RNG model.

– k-ε realizable model.

– k-ω model.

– Algebraic stress model.

– Non-linear models.
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Improvement: RNG k- ε

• k- equations are derived from the application of a rigorous 

statistical technique (Renormalization Group Method) to the 

instantaneous Navier-Stokes equations.

• Similar in form to the standard k- equations but includes:

– Additional term in  equation for interaction between turbulence 

dissipation and mean shear.

– The effect of swirl on turbulence.

– Analytical formula for turbulent Prandtl number.

– Differential formula for effective viscosity.

• Improved predictions for:

– High streamline curvature and strain rate.

– Transitional flows.

– Wall heat and mass transfer.

• But still does not predict the spreading of a round jet correctly.
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Improvement: realizable k-ε

• Shares the same turbulent kinetic energy equation as the 

standard k- model.

• Improved equation for ε.

• Variable Cμ instead of constant.

• Improved performance for flows involving:

– Planar and round jets (predicts round jet spreading correctly).

– Boundary layers under strong adverse pressure gradients or 

separation.

– Rotation, recirculation.

– Strong streamline curvature.
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k-ω model

• This is another two-equation model. In this model ω is an inverse 

time scale that is associated with the turbulence.

• This model solves two additional PDEs:

– A modified version of the k equation used in the k-ε model.

– A transport equation for ω.

• The turbulent viscosity is then calculated as follows:

• Its numerical behavior is similar to that of the k-ε models.

• It suffers from some of the same drawbacks, such as the 

assumption that μt is isotropic.




k
t

=

10. Turbulence models



389

Algebraic stress model

• The same k and ε equations are solved as with the standard k-ε 

model.

• However, the Boussinesq assumption is not used.

• The full Reynolds stress equations are first derived, and then 

some simplifying assumptions are made that allow the derivation 

of algebraic equations for the Reynolds stresses.

• Thus, fewer PDEs have to be solved than with the full RSM and it 

is much easier to implement.

• The algebraic equations themselves are not very stable, however, 

and computer time is significantly more than with the standard k-ε 

model.

• This model was used in the 1980s and early 1990s. Research 

continues but this model is rarely used in industry anymore now 

that most commercial CFD codes have full RSM implementations 

available.

10. Turbulence models



390

Non-linear models

• The standard k-ε model is extended by including second and 

sometimes third order terms in the equation for the Reynolds 

stresses.

• One example is the Speziale model:

• Here f(…) is a complex function of the deformation tensor, velocity 

field and gradients, and the rate of change of the deformation 

tensor.

• The standard k-ε model reduces to a special case of this model for 

flows with low rates of deformation.

• These models are relatively new and not yet used very widely.
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Reynolds stress model

• RSM closes the Reynolds-Averaged Navier-Stokes equations by 

solving additional transport equations for the six independent 

Reynolds stresses.

– Transport equations derived by Reynolds averaging the product of 

the momentum equations with a fluctuating property.

– Closure also requires one equation for turbulent dissipation.

– Isotropic eddy viscosity assumption is avoided.

• Resulting equations contain terms that need to be modeled.

• RSM is good for accurately predicting complex flows.

– Accounts for streamline curvature, swirl, rotation and high strain 

rates.

• Cyclone flows, swirling combustor flows.

• Rotating flow passages, secondary flows.

• Flows involving separation.
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Reynolds stress transport equation

• The exact equation for the transport of the Reynolds stress Rij:

• This equation can be read as:

– rate of change of                   plus

– transport of Rij by convection, equals

– rate of production Pij, plus

– transport by diffusion Dij, minus

– rate of dissipation εij, plus

– transport due to turbulent pressure-strain interactions πij, plus

– transport due to rotation Ωij.

• This equation describes six partial differential equations, one for 

the transport of each of the six independent Reynolds stresses.
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Reynolds stress transport equation

• The various terms are modeled as follows:

– Production Pij is retained in its exact form.

– Diffusive transport Dij is modeled using a gradient diffusion 
assumption.

– The dissipation εij, is related to ε as calculated from the standard ε 
equation, although more advanced ε models are available also.

– Pressure strain interactions πij, are very important. These include 
pressure fluctuations due to eddies interacting with each other, and 
due to interactions between eddies and regions of the flow with a 
different mean velocity. The overall effect is to make the normal 
stresses more isotropic and to decrease shear stresses. It does not 
change the total turbulent kinetic energy. This is a difficult to model 
term, and various models are available. Common is the Launder 
model [5]. Improved, non-equilibrium models are available also.

– Transport due to rotation Ωij is retained in its exact form.
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Comparison of RANS turbulence models

Model Strengths Weaknesses

Spalart-
Allmaras

Economical (1-eq.); good track
record for mildly complex B.L.
type of flows.

Not very widely tested yet; lack of submodels
(e.g. combustion, buoyancy).

STD k-

Robust, economical,
reasonably accurate; long
accumulated performance
data.

Mediocre results for complex flows with
severe pressure gradients, strong streamline
curvature, swirl and rotation. Predicts that
round jets spread 15% faster than planar jets
whereas in actuality they spread 15% slower.

RNG k-

Good for moderately complex
behavior like jet impingement,
separating flows, swirling
flows, and secondary flows.

Subjected to limitations due to isotropic eddy
viscosity assumption. Same problem with

round jets as standard k-.

Realizable

k-

Offers largely the same
benefits as RNG but also
resolves the round-jet
anomaly.

Subjected to limitations due to isotropic eddy
viscosity assumption.

Reynolds
Stress
Model

Physically most complete
model (history, transport, and
anisotropy of turbulent
stresses are all accounted for).

Requires more cpu effort (2-3x); tightly
coupled momentum and turbulence
equations.
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Recommendation

• Start calculations by performing 100 iterations or so with standard k-ε 

model and first order upwind differencing. For very simple flows (no swirl 

or separation) converge with second order upwind and k-ε model.

• If the flow involves jets, separation, or moderate swirl, converge solution 

with the realizable k-ε model and second order differencing.

• If the flow is dominated by swirl (e.g., a cyclone or unbaffled stirred 

vessel) converge solution deeply using RSM and a second order 

differencing scheme. If the solution will not converge, use first order 

differencing instead.

• Ignore the existence of mixing length models and the algebraic stress 

model.

• Only use the other models if you know from other sources that somehow 

these are especially suitable for your particular problem (e.g., Spalart-

Allmaras for certain external flows, k-ε RNG for certain transitional flows, 

or k-ω).
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• Characterize turbulence at inlets and outlets (potential backflow).

– k- models require k and .

– Reynolds stress model requires Rij and .

• Other options:

– Turbulence intensity and length scale.

• Length scale is related to size of large eddies that contain most of 

energy.

• For boundary layer flows, 0.4 times boundary layer thickness:  l  0.4d99

d99 is the boundary layer thickness – 99% of the free stream velocity.

• For flows downstream of grids /perforated plates:  l  opening size.

– Turbulence intensity and hydraulic diameter.

• Ideally suited for duct and pipe flows.

– Turbulence intensity and turbulent viscosity ratio.

• For external flows: 10/1  
t

Setting boundary conditions
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Lecture 11 – Boundary Layers and 

Separation
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André Bakker
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Overview

• Drag.

• The boundary-layer concept.

• Laminar boundary-layers. 

• Turbulent boundary-layers.

• Flow separation.

11. Boundary layers and separation



401

• The surrounding fluid exerts pressure forces and viscous forces on 

an object.

• The components of the resultant force acting on the object 

immersed in the fluid are the drag force and the lift force. 

• The drag force acts in the direction of the motion of the fluid 

relative to the object. 

• The lift force acts normal to the flow direction.

• Both are influenced by the size and shape of the object and the 

Reynolds number of the flow.

p < 0

U

p > 0

U

tw

The drag force
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Drag prediction

• The drag force is due to the pressure and shear forces acting on 

the surface of the object. 

• The tangential shear stresses acting on the object produce friction 

drag (or viscous drag). Friction drag is dominant in flow past a flat 

plate and is given by the surface shear stress times the area: 

• Pressure or form drag results from variations in the normal 

pressure around the object:

• In order to predict the drag on an object correctly, we need to 

correctly predict the pressure field and the surface shear stress.

• This, in turn, requires correct treatment and prediction of boundary 

layers and flow separation. 

• We will discuss both in this lecture.
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Viscous boundary layer

• An originally laminar flow is affected by

the presence of the walls.

• Flow over flat plate is visualized by introducing

bubbles that follow the local fluid velocity.

• Most of the flow is unaffected by the presence 

of the plate.

• However, in the region closest to the wall, the 

velocity decreases to zero.

• The flow away from the walls can be treated as inviscid 
and can sometimes be approximated as potential flow.

• The region near the wall where the viscous forces are of 
the same order as the inertial forces is termed the 
boundary layer.

• The distance over which the viscous forces have an 
effect is termed the boundary layer thickness.

• The thickness is a function of the ratio between the 
inertial forces and the viscous forces, i.e., the Reynolds 
number. As Re increases, the thickness decreases.

Images: Homsy et al. [2] 
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Effect of viscosity

• The layers closer to the wall start moving right away due to the no-slip 

boundary condition. The layers farther away from the wall start moving 

later.

• The distance from the wall that is affected by the motion is also called the 

viscous diffusion length. This distance increases as time goes on.

• The experiment shown on the left is performed with a higher viscosity 

fluid (100 mPa.s). On the right, a lower viscosity fluid (10 mPa.s) is 

shown.

Images: Homsy et al. [2] 
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Moving plate boundary layer

• An impulsively started plate in a 

stagnant fluid.

• When the wall in contact with the 

still fluid suddenly starts to move, 

the layers of fluid close to the wall 

are dragged along while the 

layers farther away from the wall 

move with a lower velocity.

• The viscous layer develops as a 

result of the no-slip boundary 

condition at the wall.

405Images: Homsy et al. [2] 
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Viscous boundary layer thickness

• Exact equations for the velocity profile in the viscous boundary 

layer were derived by Stokes in 1881.

• Start with the Navier-Stokes equation:

• Derive exact solution for the velocity profile:

• erf is the error function:

• The boundary layer thickness can be approximated by:
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Flow separation 

• Flow separation occurs when: 

– the velocity at the wall is zero or negative and an inflection point 

exists in the velocity profile, 

– and a positive or adverse pressure gradient occurs in the direction of 

flow.
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Separation at sharp corners

• Corners, sharp turns and high 

angles of attack all represent 

sharply decelerating flow 

situations, leading to separation.

• Here we see how the boundary 

layer flow is unable to follow the 

turn in the sharp corner (which 

would require a very rapid 

acceleration), causing separation 

at the edge and recirculation in 

the aft region of the backward 

facing step.

408Image: Homsy et al. [2] 
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Flow around a truck

• Flow over non-streamlined bodies 

such as trucks leads to 

considerable drag due to 

recirculation and separation 

zones.

• A recirculation zone is clear on 

the back of the cab, and another 

one around the edge of the trailer 

box.

• The addition of air shields to the 

cab roof ahead of the trailer helps 

streamline the flow around the 

trailer and minimize losses, 

reducing drag by up to 10-15%.

409Image: Homsy et al. [2] 
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Flow separation in a diffuser with a large angle

Image: Homsy et al. [2] 
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Inviscid flow around a cylinder

• The origins of the flow separation 

from a surface are associated 

with the pressure gradients 

impressed on the boundary layer 

by the external flow.

• The image shows the predictions 

of inviscid, irrotational flow around 

a cylinder, with the arrows 

representing velocity and the 

color map representing pressure.

• The flow decelerates and 

stagnates upstream of the 

cylinder (high pressure zone).

• It then accelerates to the top of 

the cylinder (lowest pressure).

• Next it must decelerate against a 

high pressure at the rear 

stagnation point.

411Image: Homsy et al. [2] 
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no separation

steady separation

unsteady vortex shedding

laminar BL

wide turbulent wake

turbulent BL

narrow turbulent wake

Drag on a smooth circular cylinder

• The drag coefficient is defined as follows:
⊥

= AvCF
Ddrag

2

2

1 
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Separation - adverse pressure gradients

• Separation of the boundary layers 

occurs whenever the flow tries to 

decelerate quickly.

• In the case of the tennis ball, the 

flow initially decelerates on the 

upstream side of the ball, while the 

local pressure increases in accord 

with Bernoulli’s equation.

• Near the top of the ball the local 

external pressure decreases, and 

the flow should accelerate as the 

potential energy of the pressure 

field is converted to kinetic energy.

• However, because of viscous 

losses, not all kinetic energy is 

recovered and the flow reverses 

around the separation point.

413Image: Homsy et al. [2] 
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Turbulent boundary layer

• Increased momentum transport due to turbulence from the free stream flow to the 

flow near the wall makes turbulent boundary layers more resistant to flow 

separation.

• The photographs depict the flow over a strongly curved surface, where there 

exists a strong adverse (positive) pressure gradient. 

• In the case where the boundary layer is laminar, insufficient momentum exchange 

takes place, the flow is unable to adjust to the increasing pressure and separates 

from the surface.

• In case where the flow is turbulent, the increased transport of momentum (due to 

the Reynolds stresses) from the free-stream to the wall increases the streamwise 

momentum in the boundary layer. This allows the flow to overcome the adverse 

pressure gradient. It eventually does separate nevertheless, but much further 

downstream.

Images: Homsy et al. [2]  and Van Dyke [8]
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Tripping the boundary layer

• Here we see how the addition of a 

trip wire to induce transition to 

turbulence changes the 

separation line further to the rear 

of the sphere, reducing the size of 

the wake and thus drastically 

diminishing overall drag.

• This well-known fact can be taken 

advantage of in a number of 

applications, such as dimples in 

golf balls and turbulence 

generation devices on airfoils.

415Images: Homsy et al. [2]  and Van Dyke [8]
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Sports balls

• Many games involve balls 

designed to use drag reduction 

brought about by surface 

roughness. 

• Many sports balls have some type 

of surface roughness, such as the 

seams on baseballs or cricket 

balls and the fuzz on tennis balls. 

• It is the Reynolds number (not the 

speed, per se) that determines 

whether the boundary layer is 

laminar or turbulent. Thus, the 

larger the ball, the lower the 

speed at which a rough surface 

can be of help in reducing the 

drag. 

• Typically, sports ball games that 

use surface roughness to promote 

an early transition of the boundary 

layer from a laminar to a turbulent 

flow are played over a Reynolds 

number range that is near the 

“trough” of the Cd versus Re 

curve, where drag is lowest. 

416Image: Homsy et al. [2] 
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Flow in reference frame relative to the ball

• Note that we have been showing flow fields in the reference frame 

of the object, similar to the flow around the soccer ball shown here.
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Flow in absolute reference frame

• However, one should keep in mind that the flow in the absolute 

reference frame may look quite different, as shown here.

11. Boundary layers and separation



Airfoil - effect of angle of attack

• The loss in pressure in the 

separated flow region behind solid 

bodies causes an imbalance 

between the upstream and 

downstream forces, contributing 

greatly to an increased net drag 

force.

• In the case of streamlined airfoils 

at low angle of attack, separation 

occurs only at the tip, with 

minimal losses. As the angle of 

attack increases, the separation 

point moves upstream, leading to 

increased drag.

419Images: Homsy et al. [2] 
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Airfoil - effect of shape

• The pressure field is changed by changing 

the thickness of a streamlined body placed 

in the flow. The acceleration and 

deceleration caused by a finite body width 

creates favorable and unfavorable 

pressure gradients.

• When the body is thin, there are only weak 

pressure gradients, and the flow remains 

attached. As the body is made thicker, the 

adverse pressure gradient resulting from 

the deceleration near the rear leads to flow 

separation, recirculation, and vortex 

shedding.

• Focusing in on the rear region of the flow, 

it is seen that as the body is again reduced 

in thickness, the separated region 

disappears as the strengths of the adverse 

pressure gradient is diminished.

420Images: Homsy et al. [2] 
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Suction

• Just as flow separation can be understood in terms of the 

combined effects of viscosity and adverse pressure gradients, 

separated flows can be reattached by the application of a suitable 

modification to the boundary conditions.

• In this example, suction is applied to the leading edge of the airfoil 

at a sharp angle of attack, removing the early separation zone, 

and moving the separation point much farther downstream.

Images: Homsy et al. [2] 
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Blowing

• Separation in external flows, such as the flow past a sudden 

expansion can be controlled not only by suction but also by 

blowing.

• In this experiment, the region of separated flow is eliminated by 

the introduction of high momentum fluid at a point near the 

separation point.

• This acts to eliminate the adverse pressure gradient by 

accelerating the fluid close to the boundary, leading to re-

attachment of the flow.

Image: Homsy et al. [2] 
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The turbulent boundary layer

• In turbulent flow, the boundary layer is defined as the thin region on the 

surface of a body in which viscous effects are important.

• The boundary layer allows the fluid to transition from the free stream 

velocity Ut to a velocity of zero at the wall.

• The velocity component normal to the surface is much smaller than the 

velocity parallel to the surface: v << u.

• The gradients of the flow across the layer are much greater than the 

gradients in the flow direction.

• The boundary layer thickness d is defined as the distance away from the 

surface where the velocity reaches 99% of the free-stream velocity.

99.0, ==d
U

uwherey
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The turbulent boundary layer
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The turbulent boundary layer

• Important variables:

– Distance from the wall: y.

– Wall shear stress: tw. The force exerted on a flat plate is the area 

times the wall shear stress. 

– Density: .

– Dynamic viscosity: .

– Kinematic viscosity: n.

– Velocity at y: U.

– The friction velocity: ut = (tw/)1/2.

• We can define a Reynolds number based on the distance to the 

wall using the friction velocity: y+ = yut/n.

• We can also make the velocity at y dimensionless using the friction 

velocity: u+ = U/ ut. 
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Boundary layer structure

y+=1

u+=y+

5.45
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• The experimental boundary layer profile can be used to calculate tw. 
However, this requires y+ for the cell adjacent to the wall to be calculated 
iteratively.

• In order to save calculation time, the following explicit set of correlations 
is usually solved instead:

• Here:

– Up is the velocity in the center of the cell adjacent to the wall.

– yp is the distance between the wall and the cell center.

– kp is the turbulent kinetic energy in the cell center.

–  is the von Karman constant (0.42).

– E is an empirical constant that depends on the roughness of the walls (9.8 
for smooth surfaces).

Standard wall functions
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Near-wall treatment - momentum equations

• The objective is to take the effects of the boundary layer correctly into 

account without having to use a mesh that is so fine that the flow pattern 

in the layer can be calculated explicitly.

• Using the no-slip boundary condition at wall, velocities at the nodes at the 

wall equal those of the wall.

• The shear stress in the cell adjacent to the wall is calculated using the 

correlations shown in the previous slide.

• This allows the first grid point to be placed away from the wall, typically at 

50 < y+ < 500, and the flow in the viscous sublayer and buffer layer does 

not have to be resolved.

• This approach is called the “standard wall function” approach.

• The correlations shown in the previous slide are for steady state 

(“equilibrium”) flow conditions. Improvements, “non-equilibrium wall 

functions,” are available that can give improved predictions for flows with 

strong separation and large adverse pressure gradients.
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Two-layer zonal model

• A disadvantage of the wall-

function approach is that it relies 

on empirical correlations. 

• The two-layer zonal model does 

not. It is used for low-Re flows or 

flows with complex near-wall 

phenomena.

• Zones distinguished by a wall-

distance-based turbulent 

Reynolds number:

• The flow pattern in the boundary layer is calculated explicitly.

• Regular turbulence models are used in the turbulent core region.

• Only k equation is solved in the viscosity-affected region.

•  is computed using a correlation for the turbulent length scale.

• Zoning is dynamic and solution adaptive.


 yk

Rey 

200yRe

200yRe
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Near-wall treatment - turbulence

• The turbulence structure in the boundary layer is highly 

anisotropic.

•  and k require special treatment at the walls.

• Furthermore, special turbulence models are available for the low 

Reynolds number region in the boundary layer.

• These are aptly called “low Reynolds number” models.

• This is still a very active area of research, and we will not discuss 

those here in detail.
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• First grid point in log-law region:

• Gradual expansion in cell size 

away from the wall.

• Better to use stretched quad/hex 

cells for economy.

Wall Function 

Approach
Two-Layer Zonal 

Model Approach

50050  +y

Computational grid guidelines

• First grid point at y+  1.

• At least ten grid points within 

buffer and sublayers.

• Better to use stretched quad/hex 

cells for economy.

431
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Comparison of near-wall treatments

Approach Strengths Weaknesses

Standard wall-
functions

Robust, economical,
reasonably accurate

Empirically based on
simple high- Re flows;
poor for low-Re
effects, massive
transpiration, PGs,
strong body forces,
highly 3D flows

Non-equilibrium

wall-functions
Accounts for

pressure gradient
(PG) effects.
Improved predictions
for separation,
reattachment,
impingement

Poor for low-Re

effects, massive
transpiration (blowing,
suction), severe PGs,
strong body forces,
highly 3D flows

Two-layer zonal
model

Does not rely on
empirical law-of-the-
wall relations, good

for complex flows,
applicable to low-Re
flows

Requires finer mesh
resolution and
therefore larger cpu

and memory
resources

432
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Obtaining accurate solutions

• When very accurate (say 2%) drag, lift, or torque predictions are required, 

the boundary layer and flow separation require accurate modeling.

• The following practices will improve prediction accuracy:

– Use boundary layer meshes consisting of quads, hexes, or prisms. 

Avoid using pyramid or tetrahedral cells immediately adjacent to the 

wall.

– After converging the solution, 

use the surface integral 

reporting option to check if y+

is in the right range, and if not 

refine the grid using 

adaption.

– For best predictions use the 

two-layer zonal model and 

completely resolve the flow in 

the whole boundary layer.

prism layer 

efficiently 

resolves 

boundary layer

tetrahedral volume mesh is 

generated automatically

triangular surface mesh on car 

body is quick and easy to 

create
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Summary

• The concept of the boundary layer was introduced. 

• Boundary layers require special treatment in the CFD model.

• The influence of pressure gradient on boundary layer attachment 

showed that an adverse pressure gradient gives rise to flow 

separation.

• For accurate drag, lift, and torque predictions, the boundary layer 

and flow separation need to be modeled accurately.

• This requires the use of:

– A suitable grid.

– A suitable turbulence model.

– Higher order discretization.

– Deep convergence using the force to be predicted as a convergence 

monitor.
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Outline

• Brief summary of turbulence models.

• Introduction to large eddy simulation (LES).

• Examples:

– HEV static mixer.

– Mixing tank with Rushton turbine.

– Mixing tank with high efficiency impeller.

436
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Modeling turbulence

• Turbulence is a 3D transient phenomenon.

– Fluctuations cover a wide range of time and length scales.

• Turbulence models range from approximate to highly rigorous:

– Steady-state isotropic models. 

– Transient 3D models of entire spectrum.

• Models are incorporated into the Navier-Stokes equations using a 

variety of methods.
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The turbulence spectrum

• Many scales of turbulent eddies exist:

– Large eddies contain most of the turbulent kinetic energy.

• Scale sizes are on the order of the flow passages.

– Energy cascades from large to small eddies.

– Small eddies dissipate the energy they receive from larger eddies in 

the spectrum.

• Difficulty in turbulence modeling is trying to accurately capture the 

contributions of all scales in the spectrum.

438
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Direct numerical simulation (DNS)

• Navier-Stokes equations are solved on a fine grid using a small 

time-step.

• Goal is to capture the smallest turbulence scales.

– large-scales are captured as well.

• Result is accurate, 3D, transient behavior.

• Great for simple flows, but computationally intensive.

– Not suited to industrial applications with CPU resources available 

today.

439
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• The number of grid points per dimension needed to resolve the 

small-scales is:

• The number of grid points needed for a 3D DNS simulation is: 

• The overall cost, including time step, of the computational effort is 

proportional to Ret
3.



 k
N tD = Re     ,Re~ t

4/3

1

4/9

3 Re~ tDN

The cost of DNS
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RANS turbulence models (1/2)

• Velocities are described by an equilibrium (vo) and fluctuating (v’) 

contribution:

vi = voi + vi’.

• Momentum equations are rewritten, then time-averaged (Reynolds 

Averaged Navier-Stokes equations).

– Averaging eliminates terms with v’ as a factor.

– Terms with vi’vj’ remain.

– These Reynolds stresses are computed with a turbulence model.

– Impact on transport equations is through the effective viscosity: 

eff ~ t + o (1 and 2 equation models).
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RANS turbulence models (2/2)

• Many flavors exist, such as:

– k- :  Robust, popular 2-equation model using constants taken from 

simple, high Re flows.

• isotropic turbulence effects:eff is a scalar.

– RSM: 5-equation (2D) or 7-equation (3D) model.

• non-isotropic turbulence effects makes this suitable for highly swirling 

flows.
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Large eddy simulation (LES)

• LES is midway between DNS and RANS in terms of:

– Rigor.

– Computational requirement.

• Spectrum of turbulent eddies in the Navier-Stokes equations is 

“filtered”: 

– The filter is a function of the grid size.

– Small eddies are removed and modeled using a subgrid-scale (SGS)

model.

– Large eddies are retained and solved for directly using a transient 

calculation.
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Filtered variables

• A variable, (x’), is filtered using a filter function, G.

• G is a function of the cell volume.

Thus:
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Filtered transport equations

• The filtered continuity and momentum equations use filtered 

variables:

and:

tij is the filtered stress tensor.

ij are the subgrid-scale Reynolds stresses.
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Subgrid-scale (SGS) modeling

• SGS Reynolds stresses are modeled by:

where t is the subgrid-scale eddy viscosity and Sij is the rate of 

strain tensor.

• Two common models are:
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Prediction Methods

l  = l/ReL
3/4

Direct numerical simulation (DNS) 

Large eddy simulation (LES)

Reynolds averaged Navier-Stokes equations (RANS)
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Dissipating 

eddies

Energy-

containing 

eddies

K

log E

LK dd /Re/1 4/3 LKd /1

Inertial 

subrange

-5/3

dcL   l

ccK /1

Taylor scale

Kolmogorov scale

LES - what does it take?

• Requires 3-D transient  modeling.

• Requires spatial and temporal resolution of  scales in “inertial 

subrange”.
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Source: “Kenics Static Mixers” brochure, 1996.

Example: HEV static mixer

• Circular or square cross-section pipe with sets of tabs mounted on 

the walls.

• Flow around tabs is unsteady, with counter-rotating longitudinal 

vortices, and hairpin vortices.
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Previous models

• Assumptions:

– Eight-fold symmetry.

– Steady state flow with RANS model.

• Results:

– Longitudinal vortices observed.

• Disadvantages:

– Hairpin vortices not observed.

– Under-prediction of mixing near center.

– No material exchange between areas surrounding tabs.
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Geometries studied

• Two models studied.

– Square duct. 

• 0.1x0.1x1 m3.

• Air at 30 m/s.

• Re ~ 200k.

– Cylindrical pipe.

• D = 0.05 m.

• Water at 0.12 m/s.

• Re ~ 5000.

• Both models:

– 500k cells.

– Unstructured grid.
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Between 3rd and 4th tabs Two widths downstream of 

last tabs

When using the RNG k- model, the 

longitudinal vortices are symmetric and stable.

Square duct results: RNG k-
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T = 6.40 s

T = 6.43 s

Cylindrical pipe: LES hairpin vortices - 1
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When using the LES model, the vortices are 

unsteady, similar to what is seen in experiments.
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T = 6.46 s

T = 6.53 s

Cylindrical pipe: LES hairpin vortices - 2
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Cylindrical pipe: LES longitudinal vortices - 1
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Cylindrical. At tip of last set of tabs.
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Cylindrical. At tip of last set of tabs.

Cylindrical pipe: LES longitudinal vortices - 2
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Effective viscosity comparison 

Cylindrical

Square Duct

R
a

ti
o

 b
et

w
ee

n
 e

ff
ec

ti
v
e 

v
is

co
si

ty
 a

n
d

 m
o

le
cu

la
r 

v
is

co
si

ty

0

20

40

60

80

100

120

140

160

Re = 5000 Re = 2E5

Subgrid LES

k- RNG

k- Standard

457

The effective viscosity is lower with the LES model than with the k-

models, allowing the vortices in the simulation to become unsteady.
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HEV mixer conclusion

• LES predicts unsteady vortex system including transient hairpin 

vortices, as also seen in experiments.

• Interaction between vortices causes material exchange between 

tabs, and between the center and tabs.
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Example: mixing tank flow instabilities

• Experimental work suggests that large-scale, time-

dependent structures, with periods much longer than 

the time of an impeller revolution, are involved in 

many of the fundamental hydrodynamic processes 

in stirred vessels. 

• Local velocity data histograms may be bi-modal or 

tri-modal.

• The gas holdup distribution may be asymmetric and 

oscillating. 

• In solids suspension processes, solids can be swept 

from one side of the vessel to the other in a 

relatively slow oscillating pattern, even in dilute 

suspensions. 

• Digital particle image velocimetry experiments have 

shown large-scale asymmetries with periods up to 

several minutes.
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Mixing tank modeling options

Daily design. General flow 

fields. How many impellers 

are needed. Instructional. 

Impeller Design. When 

velocity data is not available.

Impeller-Baffle interaction. 

Time dependence.

Research. large-scale turbulence 

and unsteady structures.

Hypothetical.
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Iso-Surface of Vorticity Magnitude (550 s-1)

Colored by velocity magnitude

Rushton turbine - trailing vortices (LES)
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Iso-Surface of Vorticity Magnitude (550 s-1)

Colored by velocity magnitude

Rushton turbine - trailing vortices (LES)
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Iso-Surface of Vorticity Magnitude (550 s-1)

Colored by velocity magnitude

Rushton turbine - trailing vortices (LES) 
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Iso-Surface of Vorticity Magnitude (80 s-1)

Colored by velocity magnitude

Rushton turbine - vorticity (LES)
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Iso-Surface of Vorticity Magnitude (80 s-1)

Colored by velocity magnitude

Rushton turbine - vorticity (LES)
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Iso-Surface of Vorticity Magnitude (80 s-1)

Colored by velocity magnitude

Rushton turbine - vortices at surface (LES)
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Iso-Surface of Vorticity Magnitude (550 and 80 s-1)

Colored by velocity magnitude

Rushton turbine - trailing vortices (LES)
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Rushton turbine - axial velocity (LES)

Iso-surface of axial velocity of 0.1m/s. The velocity is 

directed upwards in the regions enclosed by the iso-

surface. The surface is colored by strain rate on a scale 

of 0 to 100 1/s.
468

12. Large eddy simulation



Iso-Surface of Vorticity 

Magnitude (15 s-1)

Velocity on vorticity iso-surfaces (LES)

(m/s)

15.5 revs.

Iso-Surface of Vorticity 

Magnitude (30 s-1)

Vorticity is: xV

Shear rate is: V
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Velocity on vorticity iso-surfaces (LES)

(m/s)

Iso-Surface of Vorticity Magnitude (5 s-1)
3.9 revs.
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Flow at the surface (LES)

HE-3 “oilflow” lines at liquid 

surface (8.8 revolutions)

(m/s)

“Oilflow” lines are pathlines constrained to 

the surface from which they are released.
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HE-3 “oilflow” lines at liquid surface (12.3 revolutions) (LES)

(m/s)

(m/s)
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HE-3 “oilflow” at vessel wall (18 revolutions) (LES)

(m/s)
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Summary mixing tanks

• LES is a transient turbulence model that falls midway between 

RANS and DNS models.

• The differences between predicted mixing patterns with RANS 

and LES are clear.

• The predicted flow patterns for the HE-3 and PBT compared well 

with digital particle image velocimetry data reported in the 

literature and exhibited the long-time scale instabilities seen in the 

experiments. 

• The results of these studies open the way to a renewed 

interpretation of many previously unexplained hydrodynamic 

phenomena that are observed in stirred vessels.

• However, 2-D fix, 3-D fix, and MRF models are much faster 

computationally and still have their place, especially in design.
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Introduction

• Typical design problems involve the determination of:

– Overall heat transfer coefficient, e.g., for a car radiator.

– Highest (or lowest) temperature in a system, e.g., in a gas turbine, 

chemical reaction vessels, food ovens.

– Temperature distribution (related to thermal stress), e.g., in the walls 

of a spacecraft.

– Temperature response in time dependent heating/cooling problems, 

e.g., engine cooling, or how fast does a car heat up in the sun and 

how is it affected by the shape of the windshield?

13. Heat transfer
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Overview dimensionless numbers

• Nusselt number: Ratio between total heat transfer in 

a convection dominated system and the estimated conductive heat 

transfer.

• Grashof number: Ratio between buoyancy 

forces and viscous forces.

• Prandtl number: Ratio between momentum 

diffusivity and thermal diffusivity. Typical values are Pr = 0.01 for 

liquid metals; Pr = 0.7 for most gases; Pr = 6 for water at room 

temperature.

• Rayleigh number:

The Rayleigh number governs natural convection phenomena.

• Reynolds number: Ratio between inertial and 

viscous forces.
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Enthalpy equation

• In CFD it is common to solve the enthalpy equation, subject to a 

wide range of thermal boundary conditions.

– Energy sources due to chemical reaction are included for reacting 

flows.

– Energy sources due to species diffusion are included for multiple 

species flows.

– The energy source due to viscous heating describes thermal energy 

created by viscous shear in the flow. This is important when the 

shear stress in the fluid is large (e.g., lubrication) and/or in high-

velocity, compressible flows. Often, however, it is negligible.

– In solid regions, a simple conduction equation is usually solved, 

although convective terms can also be included for moving solids.

13. Heat transfer



479

Modes of heat transfer

• Conduction: diffusion of heat due to temperature gradients. A 

measure of the amount of conduction for a given gradient is the 

heat conductivity.

• Convection: when heat is carried away by moving fluid. The flow 

can either be caused by external influences, forced convection; or 

by buoyancy forces, natural convection. Convective heat transfer 

is tightly coupled to the fluid flow solution. 

• Radiation: transfer of energy by electromagnetic waves between 

surfaces with different temperatures, separated by a medium that 

is at least partially transparent to the (infrared) radiation. Radiation 

is especially important at high temperatures, e.g., during 

combustion processes, but can also have a measurable effect at 

room temperatures.

13. Heat transfer



Grid

Temperature contours

Velocity vectors

Example: Cooling flow over fuel rods

Conjugate heat transfer

• “Conjugate heat transfer” refers to 

the ability to compute conduction 

of heat through solids, coupled 

with convective heat transfer in a 

fluid.

• Coupled boundary conditions are 

available for wall zones that 

separate two cell zones.

• Either the solid zone or the fluid 

zone, or both, may contain heat 

sources.

• The example here shows the 

temperature profile for coolant 

flowing over fuel rods that 

generate heat.
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Heat conduction - Fourier’s law

• The heat flux is proportional to the 

temperature gradient:

where k(x,y,z,T) is the thermal 

conductivity. 

• In most practical situations, 

conduction, convection, and 

radiation appear in combination. 

Also, for convection, the heat 

transfer coefficient is important, 

because a flow can only carry 

heat away from a wall when that 

wall is conducting.

x

hot wall cold wall
dx

dT

temperature

profile

Q
q k T

A
= = − 
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Convection heat transfer

• Convection is movement of heat with a fluid.

• E.g., when cold air sweeps past a warm body, it draws away warm 

air near the body and replaces it with cold air.

Flow over a 

heated block

13. Heat transfer
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Forced convection example

• Developing flow in a pipe (constant wall temperature).

T wT
T wT

T wT

T

wT

x

bulk fluid temperature

heat flux from wall

T

wT
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Thermal boundary layer

• Just as there is a viscous boundary layer in the velocity distribution, there 

is also a thermal boundary layer.

• Thermal boundary layer thickness is different from the thickness of the 

(momentum) viscous sublayer, and fluid dependent. The thickness of the 

thermal sublayer for a high-Prandtl-number fluid (e.g., water) is much less 

than the momentum sublayer thickness. For fluids of low Prandtl numbers 

(e.g., liquid metal), it is much larger than the momentum sublayer 

thickness.
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• Natural convection (from a heated 

vertical plate).

• As the fluid is warmed by the 

plate, its density decreases and a 

buoyant force arises which 

induces flow in the vertical 

direction. The force is proportional 

to

• The dimensionless group that 

governs natural convection is the 

Rayleigh number:

• Typically: 

gravity
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Natural convection around a person

• Light weight warm air tends to 

move upward when surrounded 

by cooler air.

• Thus, warm-blooded animals are 

surrounded by thermal plumes of 

rising warm air. 

• This plume is made visible by 

means of a Schlieren optical 

system that is based on the fact 

that the refraction of light through 

a gas is dependent on the density 

of the gas.

• Although the velocity of the rising 

air is relatively small, the 

Reynolds number for this flow is 

on the order of 3000. 

489Image: Homsy et al. [2] 

13. Heat transfer



490

• Makes simplifying assumption that density is uniform.

– Except for the body force term in the momentum equation, which is 

replaced by:

– Valid when density variations are small (i.e., small variations in T).

• Provides faster convergence for many natural-convection flows 

than by using fluid density as function of temperature because the 

constant density assumptions reduces non-linearity.

• Natural convection problems inside closed domains:

– For steady-state solver, Boussinesq model must be used. Constant 

density o allows mass in volume to be defined.

– For unsteady solver, Boussinesq model or ideal gas law can be 

used. Initial conditions define mass in volume.

( ) ( )   − = − −0 0 0g T T g

Natural convection - Boussinesq model
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Tbody

T

TAhTTAhAqQ
body

D=−==

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average heat transfer coefficient (W/m2-K)=h

q

Newton’s law of cooling

• Newton described the cooling of objects with an arbitrary shape in 

a pragmatic way. He postulated that the heat transfer Q is 

proportional to the surface area A of the object and a temperature 

difference DT.

• The proportionality constant is the heat transfer coefficient 

h(W/m2-K). This empirical constant lumps together all the 

information about the heat transfer process that we don’t know or 

don’t understand.

13. Heat transfer



Heat transfer coefficient

• h is not a constant, but h = h(DT).

• Three types of convection.

• Natural convection. Fluid moves 

due to buoyancy.

• Forced convection: flow is 

induced by external means.

• Boiling convection: body is hot 

enough to boil liquid.

3

1

4

1
D xTh x

consth =

2Th D

Typical values of h:

4 - 4,000 W/m2-K

80 - 75,000

300 - 900,000

Thot Tcold

Thot

Tcold

Tcold

Thot
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Radiation heat transfer

• Thermal radiation is emission of energy as electromagnetic waves.

• Intensity depends on body temperature and surface 

characteristics.

• Important mode of heat transfer at high temperatures, e.g., 

combustion.

• Can also be important in natural convection problems.

• Radiation properties can be strong functions of chemical 

composition, especially CO2, H2O.

• Radiation heat exchange is difficult solve (except for simple 

configurations). We must rely on computational methods.

13. Heat transfer
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Surface characteristics

t ++=1
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reflectance
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Black body radiation

• A “black body”:

– Is a model of a perfect radiator.

– Absorbs all energy that reaches it; reflects nothing.

– Therefore

• The energy emitted by a black body is the theoretical maximum:

• This is Stefan-Boltzmann law;  is the Stefan-Boltzmann constant 

(5.6697E-8 W/m2K4).

• The wavelength at which the maximum amount of radiation occurs 

is given by Wien’s law:

• Typical wavelengths are lmax = 10 m (far infrared) at room 

temperature and lmax = 0.5 m (green) at 6000K.

4Tq =
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Real bodies

• Real bodies will emit less radiation than a black body:

• Here  is the emissivity, which is a number between 0 and 1. Such 

a body would be called “gray” because the emissivity is the 

average over the spectrum.

• Example: radiation from a small body to its surroundings.

– Both the body and its surroundings emit thermal radiation.

– The net heat transfer will be from the hotter to the colder.

• The net heat transfer is then:

• For small DT the term (Tw
4-T

4) can be 

approximated as and

with hr as an effective   

radiation heat transfer coefficient.
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The radiative heat transfer equation (RTE)
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• Radiation intensity transport equations (RTE) are solved.

– Local absorption by fluid and at boundaries links energy equation with RTE.

• Radiation intensity is directionally and spatially dependent.

– Intensity along any direction can be reduced by:

• Local absorption.

• Out-scattering (scattering away from the direction).

– Intensity along any direction can be augmented by:

• Local emission.

• In-scattering (scattering into the direction).

• Common radiation models are:

– Discrete Ordinates Model (DOM).

– Discrete Transfer Radiation Model (DTRM).

– P-1 Radiation Model.

– Rosseland Model.

– Surface-to-surface radiation (S2S)

– Monte-Carlo Model

498

Radiation
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• The radiative transfer equation is solved for a discrete number of 

finite solid angles:

• Advantages:

– Solution method similar to that for the other conservation equations.

– Conservative method leads to heat balance for coarse discretization.

– Accuracy can be increased by using a finer discretization.

– Accounts for scattering, semi-transparent media, specular surfaces.

– Banded-gray option for wavelength-dependent transmission.

• Limitations: 

– Solving a problem with a large number of ordinates is CPU-intensive.
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• Main assumption: radiation leaving surface element in a specific 

range of solid angles can be approximated by a single ray.

• Uses ray-tracing technique to integrate radiant intensity along 

each ray:

• Advantages:

– Relatively simple model.

– Can increase accuracy by increasing number of rays.

– Applies to wide range of optical thicknesses.

• Limitations:

– Assumes all surfaces are diffuse (isotropic reflection). 

– Effect of scattering not included.

– Solving a problem with a large number of rays is CPU-intensive.
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Discrete transfer radiation model (DTRM)

13. Heat transfer



501

P-1 model

• Main assumption: radiation intensity can be decomposed into series of 

spherical harmonics. Only first term in this (rapidly converging) series 

used in P-1 model.

• Advantages:

– Radiative transfer equation easy to solve with little CPU demand. 

– Works reasonably well for combustion applications where optical thickness 

is large.

– Easily applied to complicated geometries with curvilinear coordinates.

– Effects of particles, droplets, and soot can be included.

• Limitations:

– Assumes all surfaces are diffuse.  

– May result in loss of accuracy, depending on complexity of geometry, if 

optical thickness is small.

– Tends to overpredict radiative fluxes from localized heat sources or sinks.

• A further simplified (and faster but less accurate) version of this model is 

the Rosseland model.
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Choosing a radiation model

• For certain problems, one radiation model may be more                   

appropriate in general.

– Computational effort: P-1 gives reasonable accuracy with                                  

less effort.

– Accuracy: DTRM and DOM more accurate.

– Optical thickness: DTRM/DOM for optically thin media                                

(optical thickness << 1); P-1 sufficiently accurate and faster for 

optically thick media.

– Scattering: P-1 and DOM account for scattering.

– Particulate effects: P-1 and DOM account for radiation exchange 

between gas and particulates.

– Localized heat sources: DTRM/DOM with sufficiently large number of 

rays/ordinates is more appropriate.

– Surface-to-surface radiation is commonly used in electronics cooling 

and similar applications.

13. Heat transfer
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Wall heat flux calculation

walltocentercellfluiddistancenormal

tcoefficientransferheatlocalsidefluid

constantBoltzmannStefan

surfacewallexternalofemissivity

etemperaturspecifieduser

etemperaturcellfluid

etemperaturwall

:radiationwallexternal

profilelayerboundarythermalthe

describingnscorrelatiofromfollows:flowsturbulentfor

:flowslaminarfor

:fluxheat

=D

=

−=

=

=

=

=

−=

D
=

+−=





y

h

T

T

T

TTq

h

y

k
h

qTThq

f

ext

f

w

wextrad

f

f

f

radfwf





 )(

)(

44

13. Heat transfer



504

Heat transfer optimization

• We have the following relations for heat transfer:

– Conduction: 

– Convection:

– Radiation:

• As a result, when equipment designers want to improve heat 

transfer rates, they focus on:

– Increasing the area A, e.g., by using profiled pipes and ribbed 

surfaces.

– Increasing DT (which is not always controllable).

– For conduction, increasing kf /d.

– Increase h by not relying on natural convection but introducing forced 

convection.

– Increase hr, by using “black” surfaces.
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Fluid properties

• Fluid properties such as heat capacity, conductivity, and viscosity 

can be defined as:

– Constant.

– Temperature-dependent.

– Composition-dependent.

– Computed by kinetic theory.

– Computed by user-defined functions.

• Density can be computed by ideal gas law.

• Alternately, density can be treated as:

– Constant (with optional Boussinesq modeling).

– Temperature-dependent.

– Composition-dependent.

– User defined functions.

13. Heat transfer



Phase change

• Systems in which phase change 

occurs (e.g., melting, 

solidification, and sometimes 

evaporation) can be modeled as a 

single-phase flow with modified 

physical properties.

• In that case, the medium gets the 

properties of one phase state 

below a certain critical 

temperature, and the properties of 

the other phase state above a 

second critical temperature.

• Linear transitions for  and .

• A “spike” in cp is added, the area 

of which corresponds to the latent 

heat.

• A second spike is added to the heat 

conductivity curve, to keep the ratio 

between heat capacity and thermal 

conductivity constant. This is 

necessary to conduct the heat without 

the computations becoming unstable.

Temperature

viscosity

conductivity

heat capacity

density

latent

heat
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Thermal boundary conditions

• At flow inlets and exits.

– At flow inlets, must supply fluid temperature.

– At flow exits, fluid temperature extrapolated from upstream value.

– At pressure outlets, where flow reversal may occur, “backflow” 

temperature is required.

• Thermal conditions for fluids and solids.

– Can specify energy source.

• Thermal boundary conditions at walls.

– Specified heat flux.

– Specified temperature.

– Convective heat transfer. 

– External radiation.

– Combined external radiation and external convective heat transfer.

13. Heat transfer
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Notes on convergence

• Heat transfer calculations often converge slowly. It is 

recommended to use underrelaxation factors of 0.9 or larger for 

enthalpy. If lower underrelaxation factors are used, obtaining a 

good solution may take prohibitively long.

• If underrelaxation factors of 0.2 or lower have to be used to 

prevent divergence, it usually means that the model is ill-posed.

• Deep convergence is usually required with scaled residuals having 

to be of the order 1E-6 or smaller.

13. Heat transfer



• Problem: improve the efficiency of 

a tube-cooled reactor.

• Non-standard design, i.e., 

traditional correlation-based 

methods not applicable.

• Solution: more uniform flow 

distribution through the shell that 

will result in a higher overall heat 

transfer coefficient and improved 

efficiency.

Example: heat exchanger efficiency
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Baffle “C”

Baffle “D”

Heat exchanger - original design

• Original design:

– Bundle of tubes as shown. 

– Repeated geometry.

– 3 different baffles, A, C, and D.

– Reactant injectors between 

baffles “A” and “D”.
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Heat exchanger - modeling approach

• 3-dimensional, steady, turbulent, 

incompressible, isothermal.

• Bundle of tubes modeled as a 

non-isotropic porous medium. 

Two symmetry planes significantly 

reduce domain size.

• Hybrid, unstructured mesh of 

330,000 cells. 

• Zero thickness walls for baffles.

• Leakage between baffles and 

shell wall (0.15” gap) modeled 

using thin prism cells.

• Uniform inflow applied over a half-

cylindrical surface upstream of the 

first baffle.
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Non-uniform flow distribution means low efficiency

Compartments with low flow
Compartment mainly served by 

nearest upstream injector

Injection points

Flow Direction

Bundle of tubes

(Shaded area)

D         A         C        A          D        A          C         A        D

Heat exchanger - flow pattern

Recirculation loops

13. Heat transfer
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Baffle “D”

Modified (Shorter)

Baffle “ C’ ”

Heat exchanger - modifications

• Design modifications:

– Shorter baffles “ C’ ”.

– Relocated and rotated injectors.
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D         A         C’ A          D        A          C’ A         D

Heat exchanger - improved flow pattern

• Flow distribution after modifications. 

• No recirculating fluid between baffles C’ and A.

• Almost uniform flow distribution. 

• Problem has unique flow arrangement that does not allow 

traditional methods to be of any help.

• A simplified CFD model leads to significantly improved 

performance of the heat exchanger/reactor.

13. Heat transfer
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Conclusion

• Heat transfer is the study of thermal energy (heat) flows: 

conduction, convection, and radiation.

• The fluid flow and heat transfer problems can be tightly coupled 

through the convection term in the energy equation and when 

physical properties are temperature dependent.

• Chemical reactions, such as combustion, can lead to source terms 

to be included in the enthalpy equation.

• While analytical solutions exist for some simple problems, we must 

rely on computational methods to solve most industrially relevant 

applications.

13. Heat transfer
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• Simultaneous flow of: 

– Materials with different states or phases (i.e., gas, liquid or solid). 

– Materials with different chemical properties but in the same state or 

phase (i.e., liquid-liquid systems such as oil droplets in water).

• Volume fraction:

• Volume fraction of a phase = 

• Laminar versus turbulent:

– Each phase can be laminar or turbulent.

– Fluid flow (primary phase) may be turbulent with respect to the 

secondary phase (e.g., in the wake of a bubble) but may be laminar 

with respect to the domain.

Volume of the phase in a cell/domain

Volume of the cell/domain

Multiphase flow

14. Multiphase flows



Why model multiphase flow?

• Multiphase flow is important in 

many industrial processes:

– Riser reactors.

– Bubble column reactors.

– Fluidized bed reactors.

– Scrubbers, dryers, etc.

• Typical objectives of a modeling 

analysis:

– Maximize the contact between 

the different phases, typically 

different chemical compounds.

– Flow dynamics.

Rushton                             CD-6                                 BT-6

518Images: Chemineer Inc. gas-liquid mixing brochure
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• Empirical correlations. 

• Lagrangian.

– Track individual point particles.

– Particles do not interact.

• Algebraic slip model.

– Dispersed phase in a continuous phase.

– Solve one momentum equation for the mixture.

• Two-fluids theory (multi-fluids).

– Eulerian models.

– Solve as many momentum equations as there are 

phases.

• Discrete element method.

– Solve the trajectories of individual objects and their 

collisions, inside a continuous phase.

• Fully resolved and coupled.

In
c
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a
s
e
d
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o
m

p
le

x
ity

Modeling approach

Focus of 

this lecture
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bubbly flow 

droplet flow 

particle-laden flow

slug flow

annular flow free-surface flow

Multiphase flow regimes

• Bubbly flow: discrete gaseous 

bubbles in a continuous liquid.

• Droplet flow: discrete fluid 

droplets in a continuous gas. 

• Particle-laden flow: discrete solid 

particles in a continuous fluid.

• Slug flow: large bubbles in a 

continuous liquid.

• Annular flow: continuous liquid 

along walls, gas in core.

• Stratified and free-surface flow: 

immiscible fluids separated by a 

clearly-defined interface.

14. Multiphase flows
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Multiphase flow regimes

• User must know a priori the characteristics of the flow.

• Flow regime, e.g., bubbly flow, slug flow, annular flow, etc.

• Only model one flow regime at a time.

• Predicting the transition from one regime to another easiest if 

the flow regimes can be predicted by the same model. This is 

not always the case.

• Laminar or turbulent.

• Dilute or dense.

• Secondary phase diameter for drag considerations.

14. Multiphase flows
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• Consider an elementary control volume d bounded by the 

surface dS.

– Length scales:    

– Volumes:                                   

– Averaging volume and coordinate system:                                                     

tk
ldlL ~


=

=
n

i
i

tdd
1

)(

2
x

1
x

3
x

p
x


i

k

ki
n


d

k
d

n


1
y

2
y

3
y

Spatial averaging 
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Phases

• The primary and secondary phases:

– One of the phases is continuous (primary) while the

other(s) (secondary) are dispersed within the continuous 

phase.

– A diameter has to be assigned for each secondary phase 

to calculate its interaction (drag) with the primary phase.

– A secondary phase with a particle size distribution is 

modeled by assigning a separate phase for each particle 

diameter.

14. Multiphase flows
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Coupling between phases

• One-way coupling:

– Fluid phase influences particulate phase via aerodynamic drag and 

turbulence transfer.

– No influence of particulate phase on the gas phase.

• Two-way coupling:

– Fluid phase influences particulate phase via aerodynamic drag and 

turbulence transfer.

– Particulate phase reduces mean momentum and turbulent kinetic 

energy in fluid phase.

• Four-way coupling:

– Includes all two-way coupling.

– Particle-particle collisions create particle pressure and viscous 

stresses.

14. Multiphase flows
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Physical effects in dispersed systems

• Hydrodynamics:

– Change in shape.

– Diameter.

– Particle-wall collision.

– Particle-particle collision.

– Coalescence.

– Dispersion and breakup.

– Turbulence.

– Inversion.

• Other transport phenomena:

– Heat transfer.

– Mass transfer.

– Change in composition.

– Heterogeneous reactions.

14. Multiphase flows



526

Algebraic slip model (ASM)

• Solves one set of momentum equations for the mass averaged 

velocity and tracks volume fraction of each fluid throughout 

domain.

• Assumes an empirically derived relation for the relative velocity of 

the phases. 

• For turbulent flows, single set of turbulence transport equations 

solved.

• This approach works well for flow fields where both phases 

generally flow in the same direction.

14. Multiphase flows
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Eulerian-granular/fluid model features 

• Solves momentum equations for each phase and additional 

volume fraction equations.

• Appropriate for modeling fluidized beds, risers, pneumatic 

lines, hoppers, standpipes, and particle-laden flows in which 

phases mix or separate.

• Granular volume fractions from 0 to ~60%.

• Several choices for drag laws. Appropriate drag laws can be 

chosen for different processes.

14. Multiphase flows



U=7 m/s

Solids=1%

Test case for Eulerian granular model

• Contours of solid stream 

function and solid volume 

fraction when solving with 

Eulerian-Eulerian model.

• Contours of solid stream 

function and solid volume 

fraction when solving with 

Eulerian-Granular model 

(EGM). EGM takes solid 

particle specific effects 

into account.

528
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• When a fluid flows upward through a bed of solids, beyond a 

certain fluid velocity the solids become suspended. The 

suspended solids:

– has many of the properties of a fluid,

– seeks its own level (“bed height”),

– assumes the shape of the containing vessel.

• Bed height typically varies between 0.3m and 15m.

• Particle sizes vary between 1 m and 6 cm. Very small particles 

can agglomerate. Particle sizes between 10 m and 150 m 

typically result in the best fluidization and the least formation of 

large bubbles. Addition of finer size particles to a bed with coarse 

particles usually improves fluidization. 

• Superficial gas velocities (based on cross sectional area of empty 

bed) typically range from 0.15 m/s to 6 m/s.

Fluidized-bed systems

14. Multiphase flows
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Fluidized bed uses

• Fluidized beds are generally used for gas-solid contacting. Typical 

uses include:

– Chemical reactions:

• Catalytic reactions (e.g., hydrocarbon cracking).

• Noncatalytic reactions (both homogeneous and heterogeneous).

– Physical contacting:

• Heat transfer: to and from fluidized bed; between gases and solids; 

temperature control; between points in bed.

• Solids mixing.

• Gas mixing.

• Drying (solids or gases).

• Size enlargement or reduction.

• Classification (removal of fines from gas or fines from solids).

• Adsorption-desorption.

• Heat treatment.

• Coating.

14. Multiphase flows
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Gas

Dust

Gas distributor or constriction plateWindbox or plenum chamber

Dust

Separator

Gas and entrained solids

Gas in

Solids Feed

F
re
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ed
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th

Solids Discharge

Disengaging Space

(may also contain a 

cyclone separator)

Fluidized Bed

Typical fluidized bed systems - 1
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Uniform Fluidization

Bed with central jet
Gas

Solids

Gas + solids

Riser section of 

a recirculating 

fluidized bed

Typical fluidized bed systems - 2
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Fluidized bed design parameters

• Main components are the fluidization vessel (bed portion, 

disengagement space, gas distributor), solids feeder, flow control, 

solids discharge, dust separator, instrumentation, gas supply.

• There is no single design methodology that works for all 

applications. The design methodologies to be used depend on the 

application.

• Typical design parameters are bed height (depends on gas 

contact time, solids retention time, L/D for staging, space required 

for internal components such as heat exchangers).

• Flow regimes: bubbling, turbulent, recirculating, slugs. Flow regime 

changes can affect scale-up.

• Heat transfer and flow around heat exchanger components.

• Temperature and pressure control.

• Location of instrumentation, probes, solids feed, and discharges.

14. Multiphase flows
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Fluidized bed - input required for CFD

• CFD cannot be used to predict the:

– minimum fluidization velocity,

– and the minimum bubbling velocity.

• These depend on the:

– particle shape,

– particle surface roughness,

– particle cohesiveness, and the

– particle size distribution.

• All these effects are lumped into the drag term. Hence, we 

need to fine tune the drag term to match the experimental 

data for minimum fluidization or minimum bubbling velocity.

14. Multiphase flows
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– Bed expansion

– Gas flow pattern

– Solid flow pattern

– Bubbling size, frequency 

and population

– Short circuiting

– Effects of internals

– Effects of inlet and outlets

– Hot spots

– Reaction and conversion rates

– Mixing of multiple particle size

– Residence times of solids and 

gases

– Back mixing and downflows (in 

risers)

– Solids distribution/segregation

Fluidized bed - when to use CFD

• If the drag term is tuned to match the minimum fluidization 

velocity, CFD then can be used to predict:

14. Multiphase flows
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Fluidized bed simulation

Experiment: Gidaspow [11] Simulation using FLUENT

14. Multiphase flows
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Solution recommendations

• Use unsteady models for dense gas-solid flows (fluidized beds as 

well as dense pneumatic transport lines/risers). These flows 

typically have many complex features, and a steady state solution 

may not be numerically feasible unless a diffusive turbulence 

model (e.g., k-) is used.

• Use small time steps (0.001 to 0.1s) to capture important flow 

features.

• Always tune the drag formula for the specific applications, to 

match the minimum fluidization velocity.

• Higher order discretization schemes give more realistic bubble 

shapes, as do finer grids. 

14. Multiphase flows
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Conclusion

• In this lecture we discussed the:

– The algebraic slip model solves one momentum equation 

for the mixture.

– Eulerian model solves one momentum equation per 

phase.

• In the next lectures we will discuss particle tracking and free 

surface models.

14. Multiphase flows
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Discrete phase modeling

• Particle tracking.

• Steady vs. unsteady.

• Coupled vs. uncoupled.

• Advantages and limitations.

• Time stepping.

• Discretization.

• Other methods:

– Discrete element method.

– Macroscopic particles.

Particle trajectories in a spray dryer

Particle trajectories in a cyclone

15. Discrete phase modeling



Discrete phase model

• Trajectories of particles/droplets are 

computed in a Lagrangian frame. 

– Exchange (couple) heat, mass, and 

momentum with Eulerian frame gas phase.

• Discrete phase volume fraction should 

preferably be less than 10%.

– Mass loading can be large (+100%).

– No particle-particle interaction or break up.

• Turbulent dispersion modeled by:

– Stochastic tracking.

– Particle cloud model.

• Model particle separation, spray drying, 

liquid fuel or coal combustion, etc.

continuous phase 

flow field calculation

particle trajectory 

calculation

update continuous 

phase source 

terms

541
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DPM theory

Trajectory is calculated by integrating the particle force balance 

equation:

Typical continuous phase 

control volume Mass, momentum 

and heat exchange

( )
pippi

p

iiD

p

i FguuF
dt

du
 //)( +−+−=

Drag force is

a function of the

relative velocity

Additional forces:

Pressure gradient

Thermophoretic

Rotating reference frame

Brownian motion

Saffman lift

Other (user defined)

Gravity force

15. Discrete phase modeling



543

Coupling between phases

• One-way coupling:

– Fluid phase influences particulate phase via drag and turbulence.

– Particulate phase has no influence on the gas phase.

• Two-way coupling:

– Fluid phase influences particulate phase via drag and turbulence.

– Particulate phase influences fluid phase via source terms of mass, 

momentum, and energy.

– Examples include:

• Inert particle heating and cooling.

• Droplet evaporation.

• Droplet boiling.

• Devolatilization.

• Surface combustion.
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• Particle types are inert, droplet and combusting particle.

Particle types

Particle Type Description

Inert inert/heating or cooling

Droplet (oil) heating/evaporation/boiling

Combusting (coal) heating;

evolution of volatiles/swelling;

heterogeneous surface reaction

15. Discrete phase modeling
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T
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particle time

Inert heating 

law

Vaporization 

law

Boiling law

Tb

Tv

Tinjection

Heat and mass transfer to a droplet

15. Discrete phase modeling



546

volatile fraction 

flashes to vapor

Escape Reflect Trap

Particle-wall interaction

• Particle boundary conditions at walls, inlets, and outlets:

• For particle reflection, a restitution coefficient e is specified:

t

t
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v
ecomponent:Tangential

v

v
ecomponent:Normal

,1

,2
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=

=

15. Discrete phase modeling



547

Particle fates

• “Escaped” trajectories are those that terminate at a flow boundary 

for which the “escape” condition is set.

• “Incomplete” trajectories are those that were terminated when the 

maximum allowed number of time steps was exceeded.

• “Trapped” trajectories are those that terminate at a flow boundary 

where the “trap” condition has been set.

• “Evaporated” trajectories include those trajectories along which the 

particles were evaporated within the domain.

• “Aborted” trajectories are those that fail to complete due to 

numerical/round-off reasons. If there are many aborted particles, 

try to redo the calculation with a modified length scale and/or 

different initial conditions.
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• Each injection is tracked repeatedly in order to generate a 

statistically meaningful sampling.

• Mass flow rates and exchange source terms for each injection are 

divided equally among the multiple stochastic tracks.

• Turbulent fluctuations in the flow field are represented by defining 

an instantaneous fluid velocity:

• where        is derived from the local turbulence parameters:

• and       is a normally distributed random number.

iii uuu '+=

iu'

3
2' k

iu =



Turbulence: discrete random walk tracking
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• Stochastic tracking turned on.

• Five tracks per injection point.

• Adds random turbulent dispersion 

to each track.

• Tracks that start in the same point 

are all different.

• Stochastic tracking turned off.

• One track per injection point.

• Uses steady state velocities only 

and ignores effect of turbulence.

Stochastic tracking example - paper plane

549
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Particle tracking in unsteady flows

• Each particle advanced in time along with the flow.

• For coupled flows using implicit time stepping, sub-iterations for 

the particle tracking are performed within each time step.

• For non-coupled flows or coupled flows with explicit time stepping, 

particles are advanced at the end of each time step.

15. Discrete phase modeling



Sample planes and particle histograms

• Track mean particle trajectory as 

particles pass through sample 

planes (lines in 2D), properties 

(position, velocity, etc.) are written 

to files.

• These files can then be read into 

the histogram plotting tool to plot 

histograms of residence time and 

distributions of particle properties.

• The particle property mean and 

standard deviation are also 

reported.

551
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Poincaré plots

• Poincaré plots are made by 

placing a dot on a given surface 

every time a particle trajectory hits 

or crosses that surface.

• Here it is shown for a flow inside a 

closed cavity with tangentially 

oscillating walls.

• The figure on the left shows 

streamlines.

• The figure on the right shows a 

Poincaré plot for the top surface.

• This method can be used to 

visualize flow structures.

Aref and Naschie. Chaos applied to fluid mixing. Page 187. 1995. 552
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Leapfrogging vortex rings

• Two ideal coaxial vortex rings with 

the same sense of rotation will 

leapfrog each other.

• The forward vortex increases in 

diameter and slows down. The 

rearward vortex shrinks and 

speeds up.

• Once the vortices traded places, 

the process repeats.

• The photographs on the left are 

experimental visualizations using 

smoke rings, and the figures on 

the right are Poincaré plots from a 

CFD simulation showing the same 

structures. Aref and Naschie. Chaos applied to 

fluid mixing. Page 33 187. 1995.
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Mixing vessel - velocity vectors

• Smaller diameter impeller (40% of 

vessel diameter).

• Impeller jet extends to the vessel 

bottom.

• Larger diameter impeller (50% of 

vessel diameter).

• Impeller jet bends off to the wall 

and the flow direction at the 

bottom is reversed.

554
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Mixing vessel - tracking of sand particles

• Smaller diameter impeller.

• The sand is dispersed throughout 

the whole vessel with a small 

dead spot in the center of the 

bottom.

• Larger diameter impeller.

• Due to the reversed flow pattern 

at the bottom, sand does not get 

suspended throughout the whole 

vessel.

555
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Question: are particle trajectories closed?

• Not in turbulent flows.

• Viscous, periodic flows may have periodic points. These are points 

where the particle returns to its initial position after a certain 

amount of time.

• Brouwer's fixed-point theorem:

Under a continuous mapping f : S → S of an n- dimensional simplex into 

itself there exists at least one point x S such that f (x)=x.

• Application to particle tracks:

– In viscous periodic flows in closed, simply connected domains there 

will always be at least one periodic point where a particle returned to 

its original location.

– In other situations, there is no guarantee that there is any closed 

trajectory, and there may be none at all.
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Question: how fast do particles separate?

• If we place two particles infinitesimally close together, will they stay 

together, or separate?

• The separation distance d is governed by the Lyapunov exponent 

l of the flow, which states that the particles will separate 

exponentially as a function of time t:

• The higher the Lyapunov exponent, the more chaotic the flow and 

the more stretching occurs. 

• Lyapunov exponents can have any value, most of the time 

between 0 and 10, and usually between 0.5 and 1.

t
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Particle tracking accuracy

• There are three types of errors: discretization, time integration, 
and round-off.

• Research has shown that in regular laminar flows the error in the 
particle location increases as t², and in chaotic flows almost 
exponentially.

• Errors tend to align with the direction of the streamlines in most 
flows. 

• As a result, even though errors multiply rapidly (e.g., 0.1% error for 
20,000 steps is 1.00120,000 = 4.8E8), qualitative features of the flow 
as shown by the deformation of material lines can be properly 
reproduced. But the length of the material lines may be of by as 
much as 100%.

• Overall, particle tracking, when properly done, is less diffusive than 
solving for species transport, but numerical diffusion does exist.
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Particle

Particle Velocity

Touched Cells

Fluid Cells

Particle velocity patched on touched cells

Fluid Velocity

Big particles: macroscopic particle model

• Large particles that cover multiple 

grid cells.

• Particles affect the flow field and 

collide.

• Special model implemented in 

FLUENT with user defined 

functions.
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Agrawal M., Bakker A., Prinkey 

M.T. (2003) Tracking Big 

Particles, Fluent Newsletter, 

Fall 2003, page 11.
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Summary

• Easy-to-use model.

• Clear and simple physics.

• Restricted to volume fractions < 10 %.

• Particle tracking can be used for a variety of purposes:

– Visualization.

– Residence time calculations.

– Combustion.

– Chemical reaction.

– Drying.

– Particle formation processes.

• Other methods exist for large particles.
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Lecture 16 - Free Surface Flows

Applied Computational Fluid Dynamics

André Bakker



Free surface flow modeling techniques

• Lagrangian methods:
– The grid moves and follows the 

shape of the interface.

– Interface is specifically delineated 
and precisely followed.

– Suited for viscous, laminar flows.

– Problems of mesh distortion, 
resulting in instability and internal 
inaccuracy.

• Eulerian methods:
– Fluid travels between cells of the 

fixed mesh and there is no problem 
with mesh distortion.

– Adaptive grid techniques.

– Fixed grid techniques, e.g., volume 
of fluid (VOF) method.
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Volume of fluid (VOF) model

• Immiscible fluids with clearly 

defined interface.

– Shape of the interface is of interest.

• Typical problems:

– Jet breakup.

– Motion of large bubbles in a liquid.

– Motion of liquid after a dam break.

– Steady or transient tracking of any 

liquid-gas interface.

• Inappropriate if bubbles are small 

compared to a control volume 

(bubble columns).
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• Assumes that each control volume contains just one phase (or the 

interface between phases).

• Solves one set of momentum equations for all fluids.

• Surface tension and wall adhesion modeled with an additional 

source term in momentum equation.

• For turbulent flows, single set of turbulence transport equations 

solved.

• Solves a volume fraction conservation equation for the secondary 

phase.
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• Time-stepping for the VOF equation:

– Automatic refinement of the time step for VOF equation using 

Courant number C:

– Dt is the minimum transit time for any cell near the interface.

• Calculation of VOF for each time-step:

– Full coupling with momentum and continuity (VOF updated once per 

iteration within each time-step): more CPU time, less stable.

– No coupling (default): VOF and properties updated once per time 

step. Very efficient, more stable but less accurate for very large time 

steps.

fluidcell
ux

t
C

/D

D
=

VOF solution strategies: time dependence
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• Defines a step function  equal to unity at any point occupied by 

fluid and zero elsewhere such that: 

• For volume fraction of kth fluid, three conditions are possible:

– k = 0  if cell is empty (of the kth fluid).

– k = 1 if cell is full (of the kth fluid).

– 0 < k < 1  if cell contains the interface between the fluids.
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dxdydz
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Surface tension

• Surface tension along an interface arises from attractive forces 

between molecules in a fluid (cohesion).

• Near the interface, the net force is radially inward. Surface 

contracts and pressure increases on the concave side.

• At equilibrium, the opposing pressure gradient and cohesive forces 

balance to form spherical bubbles or droplets.
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

UL
=Re



U
=Ca

2LU


=We

Surface tension - when important

• To determine significance, first evaluate the Reynolds 

number.

• For Re << 1, evaluate the Capillary number. 

• For Re >> 1, evaluate the Weber number. 

• Surface tension important when  We >>1 or Ca<< 1. 

• Surface tension modeled with an additional source term in 

momentum equation.
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Surface tension example

• Cylinder of water (5 x 1 cm) is surrounded by air in no gravity.

• Surface is initially perturbed so that the diameter is 5% larger on 

ends.

• The disturbance at the surface grows by surface tension.
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Wall adhesion 

• Large contact angle (> 90°) is applied to water at bottom of 

container in zero-gravity field.

• An obtuse angle, as measured in water, will form at walls.  

• As water tries to satisfy contact angle condition, it detaches from 

bottom and moves slowly upward, forming a bubble.
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Brine: =0.001

=1005.1

Water: =0.001

=1000
g =9.8

Example: modeling of the gravity current

• Mixing of brine and fresh water. 

– 190K cells with hanging nodes.

– Domain: length 1m, height 0.15m. 

– Time step: 0.002 s.

– PISO algorithm. 

– Geometric reconstruction scheme.

– QUICK scheme for momentum.
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Gravity current (1)

T = 0 s

T = 1 s

T = 2 s
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Gravity current (2)

T = 5 s

T = 4 s

T = 3 s
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Gravity current (3)

T = 10 s

T = 7 s

T = 9 s

16. Free surface flows
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Visco-elastic fluids - Weissenberg effect

• Visco-elastic fluids, such as dough and certain polymers, tend to 

climb up rotating shafts instead of drawing down a vortex. 

• This is called the Weissenberg effect and is very difficult to model.

• The photograph shows the flow of a solution of polyisobutylene. 

Images: Barnes et al. [1]
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Example: visco-elastic fluids - blow molding

• Blow molding is a commonly used technique to 

manufacture bottles, canisters, and other plastic 

objects.

• Important parameters to model are local temperature 

and material thickness.
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Summary

• Free surface flows are encountered in many different 

applications:

– Flow around a ship.

– Blow molding.

– Extrusion.

– Mold filling.

• There are two basic ways to model free surface flows:

– Lagrangian: the mesh follows the interface shape.

– Eulerian: the mesh is fixed, and a local volume fraction is 

calculated.

• The most common method used in CFD programs based on the 

finite volume method is the volume-of-fluid (VOF) model.
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Conservation Equations
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Vector Notation - 1
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Vector Notation - 2
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• The gradient of a scalar f is a vector:

Similarly, the gradient of a vector is a second order tensor, and the 

gradient of a second order tensor is a third order tensor.

• The divergence of a vector is a scalar:

Gradients and divergence
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• The curl (“rotation”) of a vector v(u,v,w) is another vector:
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Definitions - rectangular coordinates
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Identities
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Identities  
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Differentiation rules
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Integral theorems
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Euclidian Norm

• Various definitions exist for the norm of vectors and matrices. The 

most well-known is the Euclidian norm.

• The Euclidian norm ||V|| of a vector V is:

• The Euclidian norm ||A|| of a matrix A is:

• Other norms are the spectral norm, which is the maximum of the 

individual elements, or the Hölder norm, which is similar to the 

Euclidian norm, but uses exponents p and 1/p instead of 2 and 

1/2, with p a number larger or equal to 1. 
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Matrices - Miscellaneous

• The determinant of a matrix A with elements aij and i=3 rows and j=3 

columns:

• A diagonal matrix is a matrix where all elements are zero except a11, a22, 

and a33. For a tri-diagonal matrix also the diagonals above and below the 

main diagonal are non-zero, while all other elements are zero.

• Triangular decomposition is expressing A as the product LU with L a 

lower-triangular matrix (elements above diagonal are 0) and U an upper 

triangular matrix.

• The transpose AT has elements a’ij=aji. A matrix is symmetric if  AT =A.

• A sparse matrix is a matrix where the vast majority of elements is zero 

and only few elements are non-zero.
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Matrix invariants 

• An invariant is a scalar property of a matrix that is independent of the coordinate 

system in which the matrix is written.

• The first invariant I1 of a matrix A is the trace tr A. This is simply the sum of the 

diagonal components: I1 = tr A = a11 + a22 + a33

• The second invariant is:

• The third invariant is the determinant of the matrix:  I3 = det A.

• The three invariants are the simplest possible linear, quadratic, and cubic 

combinations of the eigenvalues that do not depend on their ordering.
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Gauss-Seidel method

• The Gauss-Seidel method is a numerical method to solve the 

following set of linear equations:

• We first make an initial guess for x1:

• The superscript 1 denotes the 1st iteration. 

• Next, using x1
1:
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Gauss-Seidel method - continued

• Next, using x1
1 and x2

0:

• And continue, until:

• For all consecutive iterations we solve for x1
2, using x2

1 … xN
1, and 

next for x2
2 using x1

2, x3
1 … xN

1, etc.

• We repeat this process until convergence, i.e., until:

with δ a specified small value.

)(
1 1

232

1

131

3333

31

3
xaxa

aa

C
x +−=


−

−=
1

1

11 1 n

iNi

NNNN

N

N
xa

aa

C
x

d− − )( 1k

i

k

i
xx

Mathematics review



601

Gauss-Seidel method - continued

• It is possible to improve the speed at which this system of 

equations is solved by applying overrelaxation, or improve the 

stability if the system does not converge by applying 

underrelaxation.

• Say at iteration k the value of xi equals xi
k. If applying the Gauss-

Seidel method, the value for iteration k+1 would be xi
k+1, then, 

instead of using xi
k+1, we consider this to be a predictor.

• We then calculate a corrector as follows:

• Here R is the relaxation factor (R>0). If R<1 we use 

underrelaxation and if R>1 we use overrelaxation.

• Next we recalculate xi
k+1as follows:
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Gauss elimination

• Consider the same set of algebraic equations shown in the Gauss-

Seidel discussion. Consider the matrix A:

• The heart of the algorithm is the technique for eliminating all the 

elements below the diagonal, i.e., to replace them with zeros, to 

create an upper triangular matrix:
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Gauss elimination - continued

• This is done by multiplying the first row by a21/a11 and subtracting it 

from the second row. Note that C2 then becomes C2-C1a21/a11.

• The other elements a31 through an1 are treated similarly. Now all 

elements in the first column below a11 are 0.

• This process is then repeated for all columns.

• This process is called forward elimination.

• Once the upper diagonal matrix has been created, the last 

equation only contains one variable xn, which is readily calculated 

as xn=Cn/ann. 

• This value can then be substituted in equation n-1 to calculate xn-1

and this process can be repeated to calculate all variables xi. This 

is called backsubstitution.

• The number of operations required for this method increases 

proportional to n3. For large matrices this can be a computationally 

expensive method.
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Tridiagonal matrix algorithm (TDMA)

• TDMA is an algorithm similar to Gauss elimination for tridiagonal 

matrices, i.e., matrices for which only the main diagonal and the 

diagonals immediately above and below it are non-zero.

• This system can be written as:

• Only one element needs to be replaced by a zero on each row to 

create an upper diagonal matrix.

• When the algorithm reaches the ith row, only ai,i and Ci need to be  

modified:

• Back substitution is then used to calculate all xi.

• The computational effort scales with n and this is an efficient 

method to solve this set of equations.
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Differential equations

• Ordinary differential equation (ODE): an equation which, other than the 

one independent variable x and the dependent variable y, also contains 

derivatives from y to x. General form:

F(x,y,y’,y’’ … y(n)) = 0

The order of the equation is determined by the order n of the highest 

order derivative. 

• A partial differential equation (PDE) has two or more independent 

variables. A PDE with two independent variables has the following form:

with z=z(x,y). The order is again determined by the order of the highest 

order partial derivative in the equation. Methods such as “Laplace 

transformations” or “variable separation” can sometimes be used to 

express PDEs as sets of ODEs. These will not be discussed here.
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Classification of partial differential equations

• A general partial differential equation in coordinates x and y:

• Characterization depends on the roots of the higher order (here 

second order) terms:

– (b2-4ac) > 0 then the equation is called hyperbolic.

– (b2-4ac) = 0 then the equation is called parabolic.

– (b2-4ac) < 0 then the equation is called elliptic.

• Note: if a, b, and c themselves depend on x and y, the equations 

may be of different type, depending on the location in x-y space. In 

that case the equations are of mixed type.
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Origin of the terms

• The origin of the terms “elliptic,” “parabolic,” or “hyperbolic used to 

label these equations is simply a direct analogy with the case for 

conic sections.

• The general equation for a conic section from analytic geometry is:

where if

– (b2-4ac) > 0  the conic is a hyperbola.

– (b2-4ac) = 0  the conic is a parabola. 

– (b2-4ac) < 0  the conic is an ellipse.

022 =+++++ feydxcybxyax
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Numerical integration methods

• Ordinary differential equation:

• Here f is a known function. Φ0 is the initial point. The basic 

problem is how to calculate the solution a short time Δt after the 

initial point at time t1=t0+ Δt. This process can then be repeated to 

calculate the solution at t2, etc.

• The simplest method is to calculate the solution at t1 by adding f(t0, 

Φ0) Δt to Φ0. This is called the explicit or forward Euler method, 

generally expressed as:
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Numerical integration methods

• Another method is the trapezoid rule which forms the basis of a 

popular method to solve differential equations called the Crank-

Nicolson method:

• Methods using points between tn and tn+1 are called Runge-Kutta 

methods, which come in various forms. The simplest one is 

second-order Runge-Kutta:
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Numerically estimating zero-crossings 

(use recursively)

Linear interpolation (regula falsi)

Method of Newton-Raphson

Mathematics review



611

Jacobian

• The general definition of the Jacobian for n functions of n variables 

is the following set of partial derivatives:

• In CFD, the shear stress tensor Sij = ∂Ui/ ∂xj is also called “the 

Jacobian.”
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Jacobian - continued

• The Jacobian can be used to calculate derivatives from a function 

in one coordinate system from the derivatives of that same 

function in another coordinate system.

• Equations u=f(x,y), v=g(x,y), then x and y can be determined as 

functions of u and v (possessing first partial derivatives) as follows:

• With similar functions for xv and yv.

• The determinants in the denominators are examples of the use of 

Jacobians.
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Eigenvalues

• If an equation with an adjustable parameter has non-trivial 

solutions only for specific values of that parameter, those values 

are called the eigenvalues and the corresponding function the 

eigenfunction.

• If a differential equation with an adjustable parameter only has a 

solution for certain values of that parameter, those values are 

called the eigenvalues of the differential equation.

• For an nxn matrix A, for the equation Az = λz, then z is an 

eigenvector and λ is an eigenvalue.

• The eigenvalues are the n roots of the characteristic equation

det(λI-A) = λn+p1λ
n-1+…+pn = 0

• (λI-A) is the characteristic matrix of A.

• The polynomial is called the characteristic polynomial of A.

• The product of all the eigenvalues of A is equal to det A.

• The sum of all the eigenvalues is equal to tr A.

• The matrix is singular if at least one eigenvalue is zero.
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Taylor series

• Let f(x) have continuous derivatives up to the (n+1)st order in some 

interval containing the point a. Then:
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Error function

• The error function is defined as:

• It is the integral of the Gaussian (“normal”) distribution. It is usually 

calculated from series expansions.

• Properties are:
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Permutation symbol

• The permutation symbol ekmn resembles a third-order tensor with k, 
m, and n ranging from 1 to 3.

• If the number of transpositions required to bring k, m, and n in the 
form 1, 2, 3 is even then ekmn=1.

• If the number of transpositions required to bring k, m, and n in the 
form 1, 2, 3 is odd then ekmn=-1.

• Otherwise ekmn=0.

• Thus:

• Instead of ekmn the permutation symbol is also often written as kmn.
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Correlation functions

• Continuous signals.

• Let x(t) and y(t) be two signals. Then the correlation function Φxy(t) is 

defined as:

• The function Φxx(t) is usually referred to as the autocorrelation function 

of the signal, while the function Φxy(t) is usually called the cross-

correlation function.

• Discrete time series.

• Let x[n] and y[n] be two real-valued discrete-time signals. The 

autocorrelation function Φxx[n] of x[n] is defined as:

• The cross-correlation function is defined as:




−

+= ttt dytxt
xy

)()()(


+

−=

+=
m

xx
mxnmxn ][][][


+

−=

+=
m

xy
mynmxn ][][][

Mathematics review



618

• Fourier transforms are used to decompose a signal into a sum of 

complex exponentials (i.e., sinusoidal signals) at different 

frequencies.

• The general form is:

• X() is the Fourier transform of x(t). It is also called the spectrum 

because it shows the amplitude (“energy”) associated with each 

frequency  present in the signal. X() is a complex function with 

real and imaginary parts. The magnitude |X()| is also called the 

power spectrum.

• Slightly different forms exist for continuous, discrete, periodic, and 

aperiodic signals.
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