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FOREWORD

by John M. Smith
Professor of Process Engineering

University of Surrey,
Guildford, Surrey, UK

Mixing is an ancient
art, which, despite
being practiced for
thousands of years, has
often been taken for
granted. It has come a
long way during the
past few centuries, and
in particular, during the
past few decades.
Many of the recent
advances are the result of computerized measurement and simu-
lation techniques that are now ubiquitous in laboratories through-
out the world.  Despite the proliferation of these modern meth-
ods, there is still much to be learned from the scientists and engi-
neers of the past, whose mechanical ingenuity and wisdom con-
tinue to deserve our utmost respect.
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The only records of early equipment deal with particular diffi-
culties and, prior to the twentieth century, there is little informa-
tion about the evolution of the technology.  The classic book “De
Re Metallica” (The Kingdom of Metals), written by Georgius
Agricola c. 1550, and translated and published as a Dover
Reprint in 1950, suggests that even in the sixteenth century man-
ual mixing was being supplemented by mechanical agitation, par-
ticularly for continuous processes.  The engravings illustrating
Agricola's book include one showing a four-stage suspension and
extraction train followed by a laundering cascade.  This is a three
phase mixing operation - the plant is using mercury extraction on
an aqueous suspension of gold bearing sand. The picture shows
the six bladed paddles - remarkably similar to many in use today
- driven by gearing that allows some vertical movement of the
shafts in the contacting vessels.
The distinctive design of the
horizontal axis impellers, used
to prevent buildup and blockage
in the launders, can also be seen.

Another interesting archive of
traditional practice is Andrew
Ure's  “Encyclopaedia of Arts
Minerals and Mines”, pub-
lished in London in 1843 and
reprinted by Appleton & Co. of
Philadelphia in 1851.  Two
engravings from this source
illustrate large scale mixers
that make use of the mechani-
cal advantage of (true) horse
power and geared drives.
ii



The horse-driven mixer is a pug mill preparing clay for brick
making. The illustration also shows one half of the machinery
used for filling the brick molds. The mill partially (perhaps total-
ly) replaced a process in which the laborers were required to
stamp around in the clay as they separated and removed stones
and other contaminants.  The mixing vessel, which appears to be
about eight feet high and five feet in diameter, has an agitator
with about six inclined paddle impellers.  Since there is literally
one horsepower input, there is a specific energy consumption of
about 6 HP/1000 US gallons, a value that is perhaps not unrea-
sonable for this rather difficult mixing operation.

A planetary mixer, described in the same source, has an agitator
shaft that rotates approximately seventeen times during each cir-
cuit of the vessel.  The mixer was developed for the mashing
stage of a brewing process. Gentle agitation, preferred during the
initial wetting of the malt, was followed by more vigorous mix-
ing to maintain the homogeneity of  the two-phase mixture. The
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complex gearing allowed the speed of the mixer to be selected as
required. The planetary motion of the relatively small diameter,
up-pumping agitator sweeps out the whole vessel volume with-
out imposing unreasonable stresses on the impeller or its shaft.  It
is clear that the complex time dependent flow in this mixer con-
figuration would be a real challenge to computational modeling!

During the second half of the twentieth century, the evolution of
mixing equipment and theory has grown dramatically.
Experimental techniques have allowed engineers to better under-
stand the action of impellers operating in many regimes, and the
advent of computational fluid dynamics has enhanced this
knowledge.  The conversion of some engineers to believers in
computational methods has taken some time, but their cautious
approach is not new.  For years scientists have had to adopt ways
to grapple with new concepts and ideas. For Lord Kelvin1, this
meant developing mathematical models to explain his observations:

iv



“I am never content until I have constructed a mathematical
model of the subject I am studying. If I succeed in making 
one, I understand; otherwise I do not.”

Other modern-day scientists take a more practical point of view.
These folks view computational methods as an inexpensive way
to experiment with new ideas, test them for feasibility, and delib-
erately make mistakes to examine the consequences.  According
to John McLeod and John Osborn2,

“In real life mistakes are inevitable. Computer simulation 
however makes it economically possible to make mistakes on
purpose.  If you are astute therefore, you can learn much 
more than they cost.  Furthermore if you are at all discreet, 
no one but you need ever know you made a mistake.”

Despite the fact that the proper place for CFD in the field of mix-
ing is still not well defined in the minds of some, it has been
proven to be an invaluable source of insight for many others.  In
the chapters of this book, the authors carefully review the basics
of this technology, and illustrate how it can be applied to mixing
applications of many varieties.  A few open questions remain,
particularly with multiphase systems.  The present models for
bubble or droplet coalescence dynamics or of the mechanisms of
particle pickup from the base of a vessel are immature.  However,
progress is rapid and we can look forward with confidence to the
development of better simulations of these and other difficult
aspects of mixing operations.
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1Kelvin, William Thomson, Baron, 1824-1907, Notes of lectures
on molecular dynamics and the wave theory of light. Delivered at
the Johns Hopkins University, Baltimore, by Sir William Thomson
Kelvin, Stenographically reported by A. S. Hathaway, 1884.

2John McLeod and John Osborn, Natural Automata and Useful
Simulations, ed. P H Pattee et al. McMillan, (1966).
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I
INTRODUCTION

Mixing processes can be based on a number of mechanisms, from
agitation to sparging to static flow manipulation.  Agitation in a
stirred tank is one of the most common operations, yet presents
one of the greatest challenges in the area of computer simulation.
Stirred tanks typically contain an impeller mounted on a shaft,
and optionally can contain baffles and other internals such as
spargers, coils, and draft tubes.  Modeling a stirred tank using
computational fluid dynamics (CFD) requires consideration of
many aspects of the process.  First, any computational model
requires that the domain of interest, in this case the volume occu-
pied by the fluid inside the vessel, be described by a computa-
tional grid, a collection of small sub-domains or cells.  It is in
these cells that problem-specific variables are computed and
stored.  The computational grid must fit the contours of the ves-
sel and its internals, even if the components are geometrically
complex.   Second, the motion of the impeller in the tank must be
treated in a special way, especially if the tank contains baffles or
other internals.  The special treatment employed impacts both the
construction of the computational grid as well as the solution
method used to numerically obtain the flow field.  In this book,
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the process of modeling the flow inside a stirred tank is exam-
ined, and these special considerations are discussed at length.  

The material presented in subsequent sections is summarized
below.

Chapter II: Introduction to Computational Fluid Dynamics
Chapter III: Introduction to Numerical Methods
Chapter IV: Modeling a Stirred Tank with Experimental Data
Chapter V: Modeling a Stirred Tank Using Actual Impeller 

Geometry
Chapter VI: Evaluating Mixing from Flow Field Results
Chapter VII: Application Examples 
Chapter VIII: Closing Remarks

In Chapter II, an introduction to the field of computational fluid
dynamics is given, with an emphasis on the fundamental equa-
tions that are used to describe processes that are common in mix-
ing applications.  An overview of the numerical methods used to
solve these equations is presented in Chapter III.  

Numerical simulations of stirred tanks are normally done in
either two or three dimensions.  In 2D simulations, the geometry
and flow field are assumed to be axisymmetric, or independent of
the angular dimension.  The solution domain extends from the
axis of the vessel out to the vessel wall.   Approximations are
required for elements that do have angular dependence, such as
the impellers and baffles.  These approximate methods are dis-
cussed in Chapter IV.  In 3D simulations, the impellers, baffles,
and other internals can be modeled using their exact geometry.
The challenge in these simulations is to incorporate the motion of



the impeller in the presence of the stationary tank and internals.
Methods for performing 3D simulations are discussed in Chapter
V.  Chapter VI illustrates how CFD results can be interpreted for
mixing analysis.  Several application examples are presented in
Chapter VII, and closing remarks, including a review of some of
the common pitfalls to success, are given in Chapter VIII.  

Figure 1.1 shows the outline of a simple baffled stirred tank con-
taining a Rushton turbine on a centrally mounted shaft.  The tank
has diameter T.  The impeller has diameter D, and is located a dis-
tance C off the bottom of the tank.  These symbols will be used
throughout the book.  In addition, references will be made to the
computational grid that is necessary for computing a numerical
solution for the flow field in a stirred tank when the impeller is
operational.  This grid can take on many forms, as is discussed in
Chapter III.  One example of a computational grid for the vessel
of Figure 1.1 is shown in Figure 1.2.

INTRODUCTION
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Figure 1.1
Simple vessel showing 
a Rushton turbine on a
central shaft and baffles.

Figure 1.2
An example of a 
computational grid 
that can be used for 
the solution of the 
flow field in this vessel.



COMPUTATIONAL FLUID MIXING

4



II
INTRODUCTION TO

COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics, or CFD, is the numerical simula-
tion of fluid motion.  While the motion of fluids in mixing is an
obvious application of CFD, there are hundreds of others, rang-
ing from blood flow through arteries, to supersonic flow over an
airfoil, to the extrusion of rubber in the manufacture of automo-
tive parts.  Numerous models and solution techniques have been
developed over the years to help describe a wide variety of fluid
motion.  In this section, the fundamental equations for fluid flow
are presented as follows:  

Section 2.1: Conservation equations (for fluid flow, turbulence,
chemical species transport, and heat transfer)

Section 2.2:  Auxiliary models (for chemical reaction, multi-
phase flow, and non-Newtonian viscosity)

While the primary focus is on specific models that are relevant to
the analysis of mixing processes, a number of advanced models
for more complex flows are also discussed.  

INTRODUCTION TO CFD
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2.1 Conservation Equations 
If a small volume, or element of fluid in motion is considered,
two changes to the element will most likely take place.  First, the
fluid element will translate and possibly rotate in space, and sec-
ond, it will become distorted, either by a simple stretching along
one or more axes, or by an angular distortion that causes it to
change shape.  The process of translation is often referred to as
convection, while the process of distortion is related to the pres-
ence of gradients in the velocity field and a process called diffu-
sion.  In the simplest case, these processes govern the evolution
of the fluid from one state to another.  In more complicated sys-
tems, sources can also be present that give rise to additional
changes in the fluid.  Many more phenomena can also contribute
to the way a fluid element changes with time.  Heat can cause a
gas to expand, and chemical reactions can cause the viscosity to
change, for example.  Many of the processes such as those that
are involved in the description of generalized fluid motion are
described by a set of conservation, or transport equations.  These
equations track, over time, changes in the fluid that result from
convection, diffusion, and sources or sinks of the conserved or
transported quantity. Furthermore, these equations are coupled,
meaning that changes in one variable (say, the temperature) can
give rise to changes in other variables (say, the pressure).  The
equations discussed below describe many of these coupled phe-
nomena, with an emphasis on those processes that are typical in
mixing applications.

2.1.1 Continuity
The continuity equation is a statement of conservation of mass.
To understand its origin, consider the flow of a fluid of density ρ
through the six faces of a rectangular block, as shown in Figure 2.



The block has sides of length ∆x1, ∆x2, and ∆x3 and velocity com-
ponents u1, u2, and u3 in each of the three coordinate directions.
To ensure conservation of mass, the sum of the mass flowing
through all six faces must be zero.  

(1)

Dividing through by (∆x1 ∆x2 ∆x3) the equation can be written as:

(2)

or, in differential form:

(3)

A more compact way to write Eq. (3) is through the use of
Einstein notation:  

(4)

With this notation, whenever repeated indices occur in a term, the
assumption is that there is a sum over all indices.  Here, and else-
where in this book, Ui is the ith component of the fluid velocity,
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and partial derivatives with respect to xi are assumed to corre-
spond to one of the three coordinate directions.  For more gener-
al cases, the density can vary in time and in space, and the conti-
nuity equation takes on the more familiar form:

(5)

2.1.2 Momentum
The momentum equation is a statement of conservation of
momentum in each of the three component directions.  The three
momentum equations are collectively called the Navier-Stokes
equations.  In addition to momentum transport by convection and
diffusion, several momentum sources are also involved.

(6)

In Eq. (6), the convection terms are on the left.  The terms on the
right hand side are the pressure gradient, a source term; the diver-
gence of the stress tensor, which is responsible for the diffusion
of momentum; the gravitational force, another source term; and
other generalized forces (source terms), respectively.

2.1.3 Turbulence 
A number of dimensionless parameters have been developed for
the study of fluid dynamics that are used to categorize different
flow regimes.  These parameters, or numbers, are used to classi-
fy fluids as well as flow characteristics.  One of the most com-
mon of these is the Reynolds number, defined as the ratio of iner-
tial forces, or those that give rise to motion of the fluid, to fric-
tional forces, or those that tend to slow the fluid down.  In geo-
metrically similar domains, two fluids with the same Reynolds
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number should behave in the same manner.  For simple pipe flow,
the Reynolds number is defined as

(7)

where ρ is the fluid density, U is the axial velocity in the pipe, d
is the pipe diameter, and µ is the molecular, or dynamic viscosi-
ty of the fluid.  For mixing tanks, a modified definition is used:

(8)

where N is the impeller speed, in revolutions/sec, and D is the
impeller diameter.  Based on the value of the Reynolds number,
flows fall into either the laminar regime, with small Reynolds
numbers, or the turbulent regime, with high Reynolds numbers.
The transition between laminar and turbulent regimes occurs
throughout a range of Reynolds numbers, rather than at a single
value.  For pipe flow, transition occurs in the vicinity of Re =
2000, while in mixing tanks, it is usually different, occurring
somewhere between Re = 50 and 5000.  In the turbulent regime,
fluctuations in the mean velocity and other variables occur, and
their effect needs to be incorporated into the CFD model in order
for the model to be able to provide meaningful results.  This is
done through the use of a turbulence model.

Several methods are available for including turbulence in the
Navier-Stokes equations.  Most of these involve a process of
time-averaging the conservation equations.  When turbulence is
included, the transported quantity, say velocity, is assumed to be
the sum of an equilibrium and a fluctuating component, Ui + ui’.
After time-averaging over many cycles of the fluctuation, terms

INTRODUCTION TO CFD
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containing factors of the fluctuating component average to zero.
The only term that remains positive definite is one containing the
product of two fluctuating terms.  The remaining terms are iden-
tical to those in Eq. (6) above.  Thus the so-called Reynolds-
Averaged Navier-Stokes, or RANS equation for momentum is:

(9)

The new terms involving   are called the Reynolds stresses.
The overbar indicates that these terms represent time-averaged values.
Reynolds stresses contribute new unknowns to the RANS equations,
and need to be related to the other variables. A variety of turbulence
models are available for this purpose.

The Boussinesq Hypothesis
The Boussinesq hypothesis makes the assumption that the
Reynolds stresses can be expressed in terms of mean velocity
gradients.  The statement of the hypothesis below, shows the
introduction of a new constant that is dimensionally equivalent to
viscosity:

(10)

The new constant, µt, is the turbulent, or eddy viscosity.  It can be
seen that when Eq. (10) is substituted into Eq. (9), the terms con-
taining the partial derivatives can be combined and a new quan-
tity, the effective viscosity, can be introduced: 

(11)
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The hypothesis also introduces another term involving a new
variable, k, the kinetic energy of turbulence.  This quantity is
defined in terms of the velocity fluctuations u’, v’, and w’ in each
of the three coordinate directions:

(12)

It is the job of the turbulence model to compute the Reynolds
stresses for substitution into Eq. (9).  In some cases, this is done
by computing the parameters k and µt (or k and µeff) for substitu-
tion into Eq. (10) and ultimately, Eq. (9).  All turbulence models
use some level of approximation to accomplish this goal, and it is
the nature of the flow conditions in each specific application that
determines which set of approximations is acceptable for use.   A
brief summary of some of the popular turbulence models in use
today for industrial applications is given below.

The k-ε Model
The k-ε model is one of a family of two-equation models, for
which two additional transport equations must be solved in order
to compute the Reynolds stresses.  (Zero- and one-equation mod-
els also exist, but are not commonly used in mixing applications.)
It is a robust model, meaning that it is computationally stable,
even in the presence of other, more complex physics.  It is appli-
cable to a wide variety of turbulent flows, and has served the
fluid modeling community for many years.  It is semi-empirical,
based in large part on observations of mostly high Reynolds num-
ber flows.  The two transport equations that need to be solved for
this model are for the kinetic energy of turbulence, k, and the rate
of dissipation of turbulence, ε: 

11
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(13)

(14)

The quantities C1, C2, σk, and σε are empirical constants.  The
quantity Gk appearing in both equations is a generation term for
turbulence.  It contains products of velocity gradients, and also
depends on the turbulent viscosity:

(15)

Other source terms can be added to Equations (13) and (14) to
include other physical effects such as swirl, buoyancy or com-
pressibility, for example.  The turbulent viscosity is derived from
both k and ε, and involves a constant taken from experimental
data, Cµ, which has a value of 0.09:

(16)

To summarize the solution process for the k-ε model, transport
equations are solved for the turbulent kinetic energy and dissipa-
tion rate.  The solutions for k and ε are used to compute the tur-
bulent viscosity, µt.  Using the results for µt and k, the Reynolds
stresses can be computed for substitution into the momentum
equations.   Once the momentum equations have been solved, the
new velocity components are used to update the turbulence gen-
eration term, Gk, and the process is repeated.
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The RNG k-ε Model
The RNG model (Yakhot, 1986) was developed in response to the
empirical nature of the standard k-ε model.  Rather than being
based on observed fluid behavior, it is derived using statistical
methods used in the field of renormalization group (RNG) theo-
ry.  It is similar in form to the standard k-ε model, but contains
modifications in the dissipation equation to better describe flows
with regions of high strain, such as the flow around a bend or
reattachment following a recirculation zone.  In addition, a dif-
ferential equation is solved for the turbulent viscosity.  When the
solution of this differential equation is evaluated in the high
Reynolds number limit, Eq. (16) is returned with a coefficient,
Cµ, of 0.0845, within 7% of the empirical value of 0.09.  While
the RNG model works well for high Reynolds number flows, it
also works well for transitional flows, where the Reynolds num-
ber is in the low turbulent range.

The Realizable k-ε Model
The realizable k-ε model (Shih, 1995) is a fairly recent addition
to the family of two-equation models.  It differs from the standard
k-ε model in two ways.  First, the turbulent viscosity is comput-
ed in a different manner, making use of Eq. (16), but using a vari-
able for the quantity Cµ.  This is motivated by the fact that in the
limit of highly strained flow, some of the normal Reynolds stress-
es   , can become negative in the k-ε formulation, which is
unphysical, or unrealizable.  The variable form of the constant Cµ

is a function of the local strain rate and rotation of the fluid, and
is designed to prevent unphysical values of the normal stresses
from developing.

13
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The second difference is that the realizable k-ε model uses dif-
ferent source and sink terms in the transport equation for eddy
dissipation.  The resulting equation is considerably different from
the one used for both the standard and RNG k-ε models.  The
modified prediction of ε, along with the modified calculation for
µt, make this turbulence model superior to the other k-ε models
for a number of applications.  In particular, the model does better
in predicting the spreading rate of round jets, such as those emit-
ted from a rotating impeller blade.

The RSM Model
The Reynolds stress model (RSM) does not use the Boussinesq
hypothesis.  Rather than assume that the turbulent viscosity is
isotropic, having one value, as is done in the k-ε model, the
Reynolds stress model computes the stresses,          individually.
For 2D models, this amounts to four additional transport equa-
tions.  For 3D models, six additional transport equations are
required.  Along with the transport equation for ε, which must
also be solved in the RSM model, the full effect of turbulence can
be represented in the momentum equations with greater accuracy
than can be obtained from the k-ε models.  Flows for which the
assumption of isotropic turbulent viscosity breaks down include
those with high swirl, rapid changes in strain rate, or substantial
streamline curvature.  As computer power and speed have
increased during the past several years, the use of the Reynolds
stress turbulence model has become more widespread, giving rise
to improved accuracy over other RANS-based turbulence models
when compared to experimental results for a number of applica-
tions, such as the flow in unbaffled stirred vessels.

'' ji uu



The LES Model
A fairly recent entry to the group of commercially available tur-
bulence models is the large eddy simulation, or LES model.  This
approach recognizes that turbulent eddies occur on many scales
in a flow field.  Large eddies are often sized according to the
extents of the physical domain.  Small eddies, however, are
assumed to have similar properties and behavior for all problem
domains, independent of their overall size or purpose.  With the
LES model, the continuity and momentum equations are filtered
prior to being solved in a transient fashion. The filtering process
isolates the medium- and large-scale eddies from those that are
smaller than a typical cell size.  The effects of the small eddies
are included in the filtered equations through the use of a sub-
grid-scale model.  The transient simulation is then free to capture
the random fluctuations that develop on the medium and large
scales.  Despite the fact that a transient simulation is needed for
this turbulence model, it has proven to be worth the effort.
Simulations to date have successfully predicted unstable behav-
ior in jets, flames, and both static and stirred tank mixers.  See,
for example, Section 7.11, where LES is used to simulate the
flow in an HEV static mixer.

An overview of the turbulence models discussed in this section,
including the primary advantages and disadvantages of each, is
provided in Table 1.

15

INTRODUCTION TO CFD



COMPUTATIONAL FLUID MIXING

16

Table 1
Summary of turbulence models

2.1.4 Species
The species equation is a statement of conservation of a single
species.  Multiple species equations can be used to represent flu-
ids in a mixture with different physical properties.  Solution of
the species equations can predict how different fluids mix, but
not how they will separate.  Separation is the result of different

Turbulence Description, Advantages, and Disadvantages
Model

Standard k-ε The most widely used model, it is robust, economical, and 
has served the engineering community well for many years. 
Its main advantages are a rapid, stable calculation, and 
reasonable results for many flows, especially those with high 
Reynolds number. It is not recommended for highly swirling 
flows, round jets, or for flows with strong flow separation.

RNG k-ε A modified version of the k-ε model, this model yields 
improved results for swirling flows and flow separation. It is 
not well suited for round jets, and is not as stable as the 
standard k-ε model.

Realizable k-ε Another modified version of the k-ε model, the realizable k-ε
model correctly predicts the flow in round jets, and is also 
well suited for swirling flows and flows involving separation.

RSM The full Reynolds stress model provides good predictions for all
types of flows, including swirl, separation, and round and 
planar jets. Because it solves transport equations for the 
Reynolds stresses directly, longer calculation times are 
required than for the k-ε models.

LES Large eddy simulation is a transient formulation that 
provides excellent results for all flow systems. It solves the 
Navier-Stokes equations for large scale turbulent fluctuations 
and models only the small scale fluctuations (smaller than a 
computational cell).  Because it is a transient formulation, the
required computational resources are considerably larger than
those required for the RSM and k-ε style models.  In addition,
a finer grid is needed to gain the maximum benefit from 
the model, and to accurately capture the turbulence in 
the smallest, sub-grid scale eddies.
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body forces acting on the fluids, such as gravity acting on fluids
of different density.  To model separation, separate momentum
equations are required for each of the fluids so that the body
forces can act on the fluids independently.  (See Section 2.2.2).
Species transport is nevertheless a very useful tool for predicting
blending times or chemical reaction.  For the species i’, the con-
servation equation is for the mass fraction of that species, mi’, and
has the following form:

(17)

In Equation (17), Ji’,i is the i component of the diffusion flux of
species i’ in the mixture.  For laminar flows, Ji’,i is related to the
diffusion coefficient for the species and local concentration gra-
dients.  For turbulent flows, Ji’,i also includes a turbulent diffusion
term, which is a function of the turbulent Schmidt number.  Ri’ is
the rate at which the species is either consumed or produced in
one or more reactions, and Si’ is a general source term for species.
The general source term can be used for non-reacting sources,
such as the evaporated vapor from a heated droplet, for example.
When two or more species are present, the sum of the mass frac-
tions in each cell must add to 1.0.  For this reason, if there are n
species involved in a simulation, only n-1 species equations need
to be solved.  The mass fraction of the nth species can be com-
puted from the required condition:

(18)

More details about reacting flow are presented in Section 2.2.1.

2.1.5 Heat Transfer
Heat transfer is often expressed as an equation for the conserva-
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tion of energy, typically in the form of static or total enthalpy.
Heat can be generated (or extracted) through many mechanisms,
such as wall heating (in a jacketed reactor), cooling through the
use of coils, and chemical reaction.  In addition, fluids of differ-
ent temperatures may mix in a vessel and the time for the mixture
to come to equilibrium may be of interest.  The equation for con-
servation of energy (total enthalpy) is:

(19)

In this equation, the energy, E, is related to the static enthalpy, h,
through the following relationship involving the pressure, p, and
velocity magnitude, U:

(20)

For incompressible flows with species mixing, the static enthalpy
is defined in terms of the mass fractions, mj’, and enthalpies, hj’,
of the individual species:

(21)

The enthalpy for the individual species j’ is a temperature-
dependent function of the specific heat of that species:

(22)

Once the enthalpy has been determined from the relationships
shown above, the temperature can be extracted using Equation
(22).  This process is not straightforward because the temperature
is the integrating variable.  One technique for extracting the tem-
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perature involves the construction of a look-up table at the start
of the calculation, using the known or anticipated limits for the
temperature range.  This table can subsequently be used to obtain
temperature values for corresponding enthalpies obtained at any
time during the solution.

The first term on the right hand side of Eq. (19) represents heat
transfer due to conduction, or the diffusion of heat, where the
effective conductivity, keff, contains a correction for turbulent
simulations.  The second term represents heat transfer due to the
diffusion of species, where Jj’,i is the diffusion flux defined in
Section 2.1.4.  The third term involves the stress tensor, a collec-
tion of velocity gradients, and represents heat loss through vis-
cous dissipation.  The fourth term is a general source term that
can include heat sources due to reactions, radiation, or other
processes.

2.2 Auxiliary Models
While a wide range of applications can be modeled using the
basic transport equations described above, others involve more
complex physics and require additional modeling capabilities.
Some of these models are discussed below.

2.2.1 Chemical Reaction
Chemically reacting flows are those in which the chemical com-
position, properties, and temperature change as the result of a
simple or complex chain of reactions in the fluid.  Depending on
the implementation, reacting flows can require the solution of
multiple conservation equations for species, some of which
describe reactants, and others of which describe products.  To
balance the mass transfer from one species to another, reaction

19
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rates are used in each species conservation equation, and have as
factors the molecular weights, concentrations, and stoichiome-
tries for that species in all reactions.  

Consider for example the single step, first order reaction: 
A + B R, for which the reaction rate is given by: 

(23)

Here CA and CB (upper case) denote the mean molar concentra-
tions of reactants A and B while cA and cB (lower case) denote the
local concentration fluctuations that result from turbulence.
When the species are perfectly mixed the second term on the
right hand side, containing the correlation of the concentration
fluctuations, will approach zero.  If the species are not perfectly
mixed, this term will be negative and will reduce the reaction
rate.  The estimation of this correlation term is not straightfor-
ward and numerous models are available (Hannon, 1992) for this
purpose.  Its presence suggests, however, that the reaction rate
should incorporate not only the mean concentrations of the reac-
tant species, but the turbulent fluctuations of the reactant species
as well, since the latter gives an indication of the degree to which
these species are mixed.

One popular method for computing the reaction rates as a func-
tion of both mean concentrations and turbulence levels is through
the Magnussen model (Magnussen, 1976).  Originally developed
for combustion, it can also be used for liquid reactions by tuning
some of the model parameters.  The model consists of rates cal-
culated by two primary means.  An Arrhenius, or kinetic rate,
RK_i’,k, for species i’ in reaction k, is governed by the local mean

( )BABAi ccCCR +∝



species concentrations and temperature in the following manner:

(24)

This expression describes the rate at which species i’ is con-
sumed in reaction k.  The constants Ak and Ek, the Arrhenius pre-
exponential factor and activation energy, respectively, are adjust-
ed for specific reactions, often as the result of experimental meas-
urements.   The stoichiometry for species i’ in reaction k is rep-
resented by the factor νi’,k, and is positive or negative, depending
upon whether the species serves as a product or reactant.  The
molecular weight of the species i’ appears as the factor Mi’. The
temperature, T, appears in the exponential term and also as a fac-
tor in the rate expression, with an optional exponent, βk.
Concentrations of other species, j’, involved in the reaction, [Cj’],
appear as factors with optional exponents associated with each.
Other factors and terms, not appearing in Eq. (24), can be added
to include effects such as the presence of non-reacting species in
the rate equation.  Such so-called third-body reactions are typical
of the effect of a catalyst on a reaction, for example.  Many of the
factors appearing in Eq. (24) are often collected into a single rate
constant, Ki’,k. 

In addition to the Arrhenius rate, two mixing rates are computed
that depend on the local turbulent kinetic energy and dissipation
rate.  One rate, RM1,i’,k, involves the mass fraction of the reactant
in reaction k, mR, that returns the smallest rate:

(25)

where the subscript R refers only to the reactant species, i’ = R.
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The other mixing rate, RM2,i’,k, involves the sum over product
species mass fractions, mP:

(26)

In the mixing rate expressions, the values 4.0 and 0.5 are often
used for the constants A and B, respectively, when the model is
used for gaseous combustion.  These values can be adjusted,
however, for different types of reactions, such as those involving
liquids.  

After the rates in Equations (24), (25), and (26) are computed, the
smallest, or slowest, is used as a source term in the species trans-
port equations for all species involved in any given reaction.  The
basic idea behind the Magnussen model is that in regions with
high turbulence levels, the eddy lifetime, k/ε, is short, mixing is
fast, and as a result the reaction rate is not limited by small scale
mixing.  In this limit, the kinetic rate usually has the smallest
value.  On the other hand, in regions with low turbulence levels,
small scale mixing may be slow and limit the reaction rate.  In
this limit, the mixing rates are more important.

The Magnussen model was initially developed for simple, one-
step or two-step reaction sets, in which all reaction rates are fast
relative to the small scale mixing, even though it has found use
for more complex systems. Recently, for more complex reaction
sets, an extension of this model has been developed (Gran and
Magnussen (1996)) called the Eddy-Dissipation-Concept (EDC)
model. This model assumes that reaction occurs in small turbu-
lent structures, called the fine scales. A volume fraction of the
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small scales is calculated, which depends on the kinematic vis-
cosity of the fluid, the eddy dissipation rate, and the turbulent
kinetic energy. Reactions are assumed to occur in the fine turbu-
lent structures, over a time scale that depends on the kinematic
viscosity and the energy dissipation rate. A source term for each
chemical species is then calculated that depends on the volume
fraction of the fine scales, the time scale, and the difference in
species concentrations between the fine scale structures and the
surrounding fluid. This extension of the Magnussen model pro-
vides improved accuracy for complex, multi-step reaction sets in
which not all reactions are fast relative to the rate at which small
scale mixing occurs.

Numerous other reaction models exist that can be coupled to the
CFD calculation.  For example, a collection of reacting species
can be described by a mixture fraction, which, under certain cir-
cumstances, is a conserved quantity.   This so-called PDF model-
ing approach is based on the assumptions of infinitely fast reac-
tions and chemical equilibrium at all times.  The model takes its
name from the probability density function method that is used to
describe the turbulence-chemistry interaction in the model.
Rather than solve conservation equations for multiple species,
conservation equations for the mean and variance of the mixture
fraction are solved.   The variation in the mixture fraction is rep-
resentative of fluctuations in the species concentrations.  Thus
while the kinetic rate expression uses time-averaged values for
species mass fractions, the PDF model allows for fluctuations in
these quantities.  Auxiliary reaction calculations allow for the
extraction of intermediate and product species as a function of
the mixture fraction and temperature distributions in the final
CFD solution.  While this model has many benefits for gaseous
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combustion systems, it is not the best choice for liquid reactions
that are typical of mixing applications, where reaction rates can
fall anywhere from very fast to very slow when compared to typ-
ical mixing rates.

Another reaction modeling approach incorporates the methodol-
ogy used to describe micromixing, or mixing on the smallest
scales (Fox, 1998; Hannon, 1992; Bourne, et al., 1981).  In the
context of a CFD calculation, micromixing is on a scale that is
smaller than a typical computational cell.  Macromixing, on the
other hand, is responsible for large scale blending, and mesomix-
ing is in between these limits.  The identification of these mixing
regimes is drawn from assumptions at the core of turbulence
modeling theory, namely that turbulence energy is generated in
large eddies within a domain, and cascades to successively small-
er eddies before being dissipated at the smallest scales.   This cas-
cade of turbulence is associated with a cascade of mixing, from
macromixing on the large scales, to mesomixing throughout the
mid-scales, to micromixing on the sub-grid scales.  One motiva-
tion for the interest in micromixing in liquid reactions is that
micromixing must occur before reactions can take place.   It
therefore plays an important role when the reaction times are on
the same order as the mixing times.   Micromixing models typi-
cally use a mixture fraction approach, and use a PDF formulation
for the turbulence-chemistry interaction.  The micromixing mod-
els are incorporated through the calculation of the variance of the
mixture fraction.  

2.2.2 Multiphase Flows
When multiple fluids are involved in a flow field, representing
them by multiple species equations only works if the fluids are



mixing and not separating.  Any separation caused by the action
of body forces, such as gravity or centrifugal force, can only be
captured by treating the fluids with a multiphase model.  When
such a model is used, each of the fluids is assigned a separate set
of properties, including density.  Because different densities are
used, forces of different magnitude can act on the fluids, enabling
the prediction of separation.  Five of the most popular multiphase
models that are in wide use in commercial software today are
described below.

Dispersed or Discrete Phase Model
The dispersed phase model uses the Navier-Stokes equations to
describe a continuous fluid phase, and a Lagrangian particle
tracking method to describe a dispersed phase consisting of par-
ticles, droplets, or bubbles.  Heat, mass, and momentum
exchange is permitted between the dispersed and fluid phases.
Thus gas bubbles can rise in a liquid, sand particles can settle,
and water droplets can evaporate or boil, releasing steam to a
background of warm gas, for example.  The model is widely used
for coal and liquid fuel combustion, bubble columns, and gas
spargers in stirred tanks.  It is best when the dispersed phase does
not exceed 10% by volume of the mixture in any region.

VOF Model
The volume of fluid, or VOF model is designed for two or more
immiscible fluids.  Because the fluids do not mix, each computa-
tional cell is filled with either purely one fluid, purely another
fluid, or the interface between two (or more) fluids.  Because of
this unique set of conditions, only a single set of Navier-Stokes
equations is required.  Each fluid is allowed to have a separate set
of properties.  The properties used are those of the fluid filling the
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control volume.  If the interface lies inside the control volume,
special treatment is used to track its position and slope in both the
control volume and neighboring cells as the calculation progress-
es.  This model is used to track free surface flows or the rise of
large bubbles in a liquid, for example.

Eulerian Multiphase Model
The Eulerian multiphase model is designed for systems contain-
ing two or more interpenetrating fluids.  The fluids can be in the
form of liquids, gases, or solids.  Whereas the dispersed phase
model works best for low volume fraction mixtures (<10%), the
Eulerian multiphase model is general enough that any volume
fraction of any phase is allowed.  Separate sets of momentum and
continuity equations are used to describe each fluid.  Momentum
transfer between the phases is incorporated through the use of
exchange terms in the momentum equations.  When heat and
mass transfer between phases occurs, exchange terms are used in
the energy and continuity equations as well.  The volume frac-
tions of the phases are tracked, with the condition that the sum of
the volume fractions for all phases is identically 1.0 at all times
in all control volumes.   Separate equations can also be used for
turbulence and species transport for each phase.  While momen-
tum, mass, heat, and species transfer between phases may be well
understood, the same cannot be said for the coupling of the tur-
bulence equations.   This is an area that is currently undergoing
active research at a number of institutions worldwide.

Eulerian Granular Multiphase Model
When the primary phase is a liquid or a gas and the secondary
phase consists of solid particles, a modified form of the Eulerian
multiphase model can be used.  The Eulerian granular multiphase



(EGM) model uses kinetic theory to describe the behavior of the
granular or particulate phase, which is different in many ways
from that of a fluid phase.  (See, for example, Ogawa et al.
(1980), Ding et al. (1990), and Syamlal et al. (1993)).  In partic-
ular, the viscosity of the granular phase undergoes a discontinu-
ous change as the granular material transforms from a packed bed
at rest to a fluid in motion, and this can only be captured by the
special treatment at the heart of the EGM model.  Also unique to
the model is a solids pressure, which arises in part from inelastic
collisions between particles.  As is typical of a gas described by
kinetic theory, a Maxwellian velocity distribution can be assumed
for the granular phase.  The width of this distribution, or spread
in velocity fluctuations about the mean value, is related to the
granular temperature, a parameter that can contribute to several
other phenomena in granular multiphase flows.   The maximum
volume fraction that the granular phase can occupy is always less
than 1.0 (typically 0.6), owing to the void that is always present
between the particles.  These and other issues are addressed by
the EGM model, allowing it to simulate a wide array of granular
flow applications, from solids suspension in stirred tanks to flu-
idized bed flow patterns to flow in a riser.

Algebraic Slip Mixture Model
As with the Eulerian multiphase model, the algebraic slip mix-
ture, or ASM model is designed for use with two interpenetrating
fluids.   A full set of Navier-Stokes equations is solved for the pri-
mary fluid.  Rather than solve a complete set for the secondary
fluid, however, an algebraic equation for the slip velocity
between the fluids is solved instead.  The slip velocity is derived
from the fluid properties and local flow conditions, and is used to
compute the velocity of the secondary phase.  The ASM model is
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best when used for liquid-liquid or gas-liquid mixtures.  It can
also be used for lightly loaded granular mixtures, where the
physics associated with the granular phase as it approaches the
packing limit are not as important.

2.2.3 Non-Newtonian Viscosity 
For Newtonian fluids, the viscosity often varies weakly with the
temperature, by an amount that depends upon the temperature
range in use.  Many fluids do not fit this simple pattern, howev-
er, and have viscosities that also depend upon the shear rate in the
fluid.  The viscosity of these so-called non-Newtonian fluids can
be described by one of a number of laws that involve the local
shear rate of the fluid in one way or another.  The dependence can
be in the form of a power law (the shear rate raised to some
power) and can involve a discontinuous transition after a mini-
mum yield stress has been exceeded.  In some cases, a fluid will
transition from non-Newtonian to Newtonian behavior after a
threshold stress has been exceeded.   In general, shear-thinning
fluids exhibit a drop in viscosity in regions of high shear, while
shear-thickening fluids exhibit an increase in viscosity in these
regions.   For computational fluid dynamics, the consequence of
non-Newtonian flow modeling is that the viscosity, a fluid prop-
erty, becomes coupled to the fluid motion, making the equation
set more difficult to solve if the viscosity is strongly varying
within the limits of the flow field conditions.

Some non-Newtonian fluids are also described by a property
called viscoelasticity.  As for Newtonian fluids, these fluids
deform when a shearing force is applied, but they have a partial
memory of their state prior to the application of the force.  Thus
when the force is withdrawn, they return, to a greater or lesser



degree, to their previous state.  Specialty CFD codes exist that
have comprehensive models for both non-Newtonian and vis-
coelastic fluids.  These codes are used for certain laminar mixing
processes in stirred tanks and extruders.
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III
INTRODUCTION TO

NUMERICAL METHODS

The differential equations presented in the previous section
describe the continuous movement of a fluid in space and time.
To be able to solve those equations numerically, all aspects of the
process need to be discretized, or changed from a continuous to
a discontinuous formulation.   For example, the region where the
fluid flows needs to be described by a series of connected control
volumes, or computational cells.  The equations themselves need
to be written in an algebraic form.  Advancement in time and
space needs to be described by small, finite steps rather than the
infinitesimal steps that are so familiar to students of calculus.  All
of these processes are collectively referred to as discretization.  In
this section, discretization of the domain, or grid generation, and
discretization of the equations are described. A section on solu-
tion methods and one on parallel processing are also included:

Section 3.1:  Discretization of the domain:  grid generation
Section 3.2:  Discretization of the equations
Section 3.3:  Solution methods
Section 3.4:  Parallel processing
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3.1 Discretization of the Domain: Grid Generation
To break the domain into a set of discrete sub-domains, or com-
putational cells, or control volumes, a grid is used.  Also called a
mesh, the grid can contain elements of many shapes and sizes.  In
2D domains, for example, the elements are usually either quadri-
laterals or triangles.  In 3D domains, they can be tetrahedra (with
four sides), prisms (five sides), pyramids (five sides) or hexahe-
dra (six sides) (Figure 3).  

A series of line segments (2D) or planar faces (3D) connecting
the boundaries of the domain are used to generate the elements.
Structured grids are always quadrilateral (2D) or hexahedral
(3D), and are such that every element has a unique address in I,
J, K space, where I, J, and K are indices used to number the ele-
ments in each of the three computational directions (Figure 4).   

Figure 3
Element types
that can be used
in computational
grids.

Figure 4
Structured grids in 2D (4.1) and 3D (4.2)
showing the I, J, and K directions.

4.1 4.2

Triangle Tetrahedron Hexahedron

Quad Prism/Wedge
Pyramid



The I, J, and K directions can, but need not be aligned with the
coordinate directions x, y, and z. Unstructured grids do not follow
this addressing rule (Figure 5).  Hybrid meshes are unstructured
meshes that make use of different types of elements (triangles
and quadrilaterals, for example).  Block structured meshes use
quadrilateral (2D) or hexahedral (3D) elements, and have I, J, K
structures in multi-cell blocks rather than across the entire
domain.

In general, the density of cells in a computational grid needs to
be fine enough to capture the flow details, but not so fine that the
overall number of cells in the domain is excessively large, since
problems described by large numbers of cells require more time
to solve.  Nonuniform grids of any topology can be used to focus
the grid density in regions where it is needed and allow for
expansion in other regions.  

In laminar flows, the grid near boundaries should be refined to
allow the solution to capture the boundary layer flow detail.  A
boundary layer grid should contain quadrilateral elements in 2D
and hexahedral or prism elements in 3D, and should have at least
five layers of cells.  For turbulent flows, it is customary to use a
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Unstructured grids using hexahedral elements
(5.1) or a mixture of elements (5.2).
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wall function in the near-wall regions.  This is due to the fact that
the transport equation for the eddy dissipation has a singularity at
the wall, where k (in the denominator in the source terms in Eq.
(14)) is zero.  Thus the equation for ε must be treated in an alter-
native manner.  Wall functions rely on the fact that the flow in a
turbulent boundary layer consists of a narrow viscous sub-layer
and a broad, fully turbulent, or “log-law” layer in which the
behavior is well documented.  In particular, the shear stress due
to the wall can be extracted from a linear relationship involving
the log of the perpendicular distance to the wall.  Guidelines exist
so that the placement of the cell center in the cell nearest the wall
lies outside the viscous sub-layer and inside the log-law layer.  If
these guidelines are followed, the wall shear stress will be cap-
tured correctly, resulting in the best possible predictions for pres-
sure drop and heat transfer in the simulation.

3.2 Discretization of the Equations
Several methods have been employed over the years to solve the
Navier-Stokes equations numerically, including the finite differ-
ence, finite element, spectral element, and finite volume meth-
ods.  The focus of this chapter is on the finite volume method,
which is described in detail below.  Once the method and termi-
nology have been presented, the other methods will be briefly
discussed (Section 3.2.3).  

To illustrate the discretization of a typical transport equation
using the finite volume formulation (Patankar, 1980; Versteeg,
1995), a generalized scalar equation can be used with the rectan-
gular control volume shown in Figure 6.1.  The scalar equation
has the form:



(27)

The parameter Γ is used to represent the diffusion coefficient for
the scalar φ.  If φ is one of the components of velocity, for exam-
ple, Γ would represent the viscosity.  All sources are collected in
the term S’.  Again, if φ is one of the components of velocity, S’
would be the sum of the pressure gradient, the gravitational force,
and any other additional forces that are present.  The control vol-
ume has a node, P, at its center where all problem variables are
stored.  The transport equation describes the flow of the scalar φ
into and out of the cell through the cell faces.  To keep track of
the inflow and outflow, the four faces are labeled with lower case
letters representing the east, west, north, and south borders.  The
neighboring cells also have nodes at their centers, and these are
labeled with the capital letters E, W, N, and S.   For the purpose
of this example, flow in the 1D row of cells shown in Figure 6.2
is considered.
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The first step in the discretization of the transport equation is an
integration over the control volume.  The volume integral can be
converted to a surface integral by applying the divergence theo-
rem.  Using a velocity in the positive x-direction, neglecting
time-dependence, and assuming that the faces e and w have area
A, the integrated transport equation takes the following form:

(28)

where S is the volume integral of the source terms contained in
S’.  This expression contains four terms that are evaluated at the
cell faces.  To obtain the face values of these terms as a function
of values that are stored at the cell centers, a discretization
scheme is required.

3.2.1 Discretization Schemes
Since all of the problem variables are stored at the cell center, the
face values (the derivatives, for example) need to be expressed in
terms of cell center values.  To do this, consider a steady-state
conservation equation in one dimension without any source terms:

(29)

This equation can be solved exactly.  On a linear domain that
extends from x = 0 to x = L, corresponding to the locations of two
adjacent cell nodes, with φ = φ0 at x = 0 and φ = φL at x = L, the
solution for φ at any intermediate location (such as the face) has
the form:

(30)
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The Peclet number, Pe, appearing in this equation is the ratio of
the influence of convection to that of diffusion on the flow field.  

(31)

Depending on the value of the Peclet number, different limiting
behavior exists for the variation of φ between x = 0 and x = L.
These limiting cases are discussed below, along with some more
rigorous discretization, or differencing schemes that are in popu-
lar use today.

Central Differencing Scheme
For Pe = 0, there is no convection, and the solution is purely dif-
fusive.  This would correspond to heat transfer due to pure con-
duction, for example.  In this case, the variable φ varies linearly
from cell center to cell center, so the value at the cell face can be
found from linear interpolation.  When linear interpolation is
used in general, i.e when both convection and diffusion are pres-
ent, the discretization scheme is called central differencing.
When used in this manner, as a general purpose discretization
scheme, it can lead to errors and loss of accuracy in the solution.
One way to reduce these errors is to use a refined grid, but the
best way is to use another differencing scheme.  There is one
exception to this rule.   Central differencing is the preferred dis-
cretization scheme when the LES turbulence model is used.

Upwind Differencing Schemes
For Pe >>1, convection dominates, and the value at the cell face
can be assumed to be identical to the upstream, or upwind value,
i.e. φw = φW.  When the value at the upwind node is used at the
face, independent of the flow conditions, the process is called
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first order upwind differencing.  A modified version of first order
upwind differencing makes use of multi-dimensional gradients in
the upstream variable, based on the upwind neighbor and its
neighbors.  This scheme, which makes use of a Taylor series
expansion to describe the upwind gradients, is called second
order upwind differencing.  It offers greater accuracy than the
first order upwind method, but requires additional computational
effort.

Power Law Differencing Scheme
For intermediate values of the Peclet number, 0 < Pe < 10, the
face value can be computed as a function of the local Peclet num-
ber, as shown in Eq. (30).  This expression can be approximated
by one that does not use exponentials, involving the Peclet num-
ber raised to an integral power.  It is from this approximate form
that the power law differencing scheme draws its name.  This first
order scheme is identical to the first order upwind differencing
scheme in the limit of strong convection, but offers slightly
improved accuracy for the range of Peclet numbers mentioned
above. 

QUICK Differencing Scheme
The QUICK differencing scheme (Leonard and Mokhtari, 1979)
is similar to the second order upwind differencing scheme, with
modifications that restrict its use to quadrilateral or hexahedral
meshes.  In addition to the value of the variable at the upwind cell
center, the value from the next upwind neighbor is also used.
Along with the value at the node P, a quadratic function is fitted
to the variable at these three points and used to compute the face
value.  This scheme can offer improvements over the second
order upwind differencing scheme for some flows with high swirl.



Choosing a Differencing Scheme
If the flow is aligned with the grid, first order differencing
schemes such as upwind and power law differencing are accept-
able.  Flow in a straight pipe modeled with a hexahedral grid is
one example where these schemes would be sufficient.  However,
since flow patterns in both static and stirred mixers do not, in
general, satisfy this condition, especially if unstructured grids are
used, second order differencing is recommended to reduce the
numerical errors in the final solution.  In general, first order
schemes allow the error to reduce linearly with the grid spacing
while second order schemes allow the error to reduce as the
square of the grid spacing.  A common practice in CFD is to
obtain a partially converged solution using one of the first order
schemes, and then switch to a higher order scheme to obtain the
final converged result. The discretized schemes discussed above
are summarized in Table 2.

Table 2: Summary of discretization schemes
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Discretization Description, Advantages, and Disadvantages
Scheme
Central Good when diffusion dominates. Assumes there is no convection,

and that variables vary linearly from cell center to cell center.  
For convective flows, errors can be reduced by the use of a 
refined grid.  This scheme is recommended for LES simulations.

First order upwind Good when convection dominates and the flow is aligned with 
the grid. Assumes the face value for each variable is equal to 
the upstream cell center value.  Stable, and a good way to start 
off a calculation.  A switch to a higher order scheme is usually 
recommended once the solution has partially converged.

Second order upwind Good for full range of Peclet numbers. Computes the face 
value for each variable from gradients involving the upwind 
neighbor and its neighbors.

Power law Good for intermediate values of Peclet number. Computes the 
face value for each variable from gradients expressed in the 
form of a power law function. For high Peclet numbers, results
are equivalent to first order upwind.

QUICK Good for full range of Peclet numbers. Similar to second order
upwind, but restricted to quadrilateral and hexahedral meshes.
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3.2.2 Final Discretized Equation
Once the face values have been computed using one of the above
differencing schemes, terms multiplying the unknown variable at
each of the cell centers can be collected.  Large coefficients mul-
tiply each of these terms.  These coefficients contain information
that includes the properties, local flow conditions, and results
from previous iterations at each node.  In terms of these coeffi-
cients, Ai, the discretized equation has the following form for the
simple 2D grid shown in Figure 6:

(32)

For a complex, or even a simple flow simulation, there will be
one equation of this form for each variable solved, in each cell in
the domain.  Furthermore, the equations are coupled, since, for
example, the solution of the momentum equations will impact the
transport of every other scalar quantity.  It is the job of the solver
to collectively solve all of these equations with the most accura-
cy in the least amount of time.

3.2.3 Alternative Numerical Techniques
As mentioned earlier, other methods for solving the Navier-
Stokes equations exist.   Two of these are described briefly below.

Finite Difference Method
The finite difference, or Taylor series formulation replaces the
derivatives in Eq. (27) with finite differences evaluated at the
variable storage sites (cell centers) using a truncated Taylor series
expansion.  The differences for each variable are computed using
either the cell value or the adjacent neighbor values, depending
on the order of the derivative.  The variation of the variable
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between storage sites is ignored during the solution process.
While this is an acceptable method to solve for some simply
varying functions, it is not the best choice for general purpose
CFD analysis because the method is limited to simple grids, and
does not conserve mass on coarse grids.  

Finite Element Method
The finite element method uses piecewise linear or quadratic
functions to describe the variation of the variable φ within a cell.
By substituting the selected function into the conservation equa-
tion for each cell and applying the boundary conditions, a linear
system of coupled equations is obtained.  These equations are
then solved (iteratively) for the unknown variable at all storage
sites.  

This method is popular for use with structural analysis codes and
some CFD codes.  In the early days of CFD, when structured
orthogonal grids were used for most applications of the finite vol-
ume method, the finite element method offered the luxury of
unstructured meshes with non-orthogonal elements of various
shapes.  Now that the use of unstructured meshes is common
among finite volume solvers, the finite element method has been
primarily used for certain focused CFD application areas.  In par-
ticular, it is popular for flows that are neither compressible nor
highly turbulent, and for laminar flows involving Newtonian and
non-Newtonian fluids, especially those with elastic properties.

3.3 Solution Methods
The result of the discretization process is a finite set of coupled
algebraic equations that need to be solved simultaneously in
every cell in the solution domain.  Because of the non-linearity of
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the equations that govern the fluid flow and related processes, an
iterative solution procedure is required. Two methods are com-
monly used.  A segregated solution approach is one where one
variable at a time is solved throughout the entire domain. Thus
the x-component of the velocity is solved on the entire domain,
then the y-component is solved, and so on.  One iteration of the
solution is complete only after each variable has been solved in
this manner.   A coupled solution approach, on the other hand, is
one where all variables, or at a minimum, momentum and conti-
nuity, are solved simultaneously in a single cell before the solver
moves to the next cell, where the process is repeated.  The segre-
gated solution approach is popular for incompressible flows with
complex physics, typical of those found in mixing applications.

Typically, the solution of a single equation in the segregated
solver is carried out on a subset of cells, using a Gauss-Seidel lin-
ear equation solver.  In some cases, the solution time can be
improved (i.e. reduced) through the use of an algebraic multigrid
correction scheme.  Independent of the method used, however,
the equations must be solved over and over again until the col-
lective error reduces to a value that is below a preset minimum
value.  At this point, the solution is considered converged, and the
results are most meaningful.  Converged solutions should demon-
strate overall balances in all computed variables, including mass,
momentum, heat, and species for example.  Some of the termi-
nology used to describe the important aspects of the solution
process is defined below.

3.3.1 The SIMPLE Algorithm
For 3D simulations, the three equations of motion (Eq. (6)) and
the equation of continuity (Eq. (5)) combine to form four equa-



tions for the four unknowns that are the pressure and the three
velocity components.  Because there is no explicit equation for
the pressure, special techniques have been devised to extract it in
an alternative manner.  The most well known of these techniques
is the SIMPLE algorithm, or Semi-Implicit Method for Pressure-
Linked Equations (Patankar, 1980).  Indeed, a family of algo-
rithms has been derived from this basic one, each of which has a
small modification that makes it well suited to one application or
another.

The essence of the algorithm is as follows.  A guessed pressure
field is used in the solution of the momentum equations. (For all
but the first iteration, the guessed pressure field is simply the last
updated one.)  The new velocities are computed, but these will
not, in general, satisfy the continuity equation, so corrections to
the velocities are determined.  Based on the velocity corrections,
a pressure correction is computed which, when added to the orig-
inal guessed pressure, results in an updated pressure.  Following
the solution of the remaining problem variables, the iteration is
complete and the entire process repeated.

3.3.2 Residuals
If the algebraic form of a conservation equation in any control
volume (Eq. (32)) could be solved exactly, it would be written as:

(33)

Since the solution of each equation at any step in an iterative cal-
culation is based on inexact information, originating from initial
guessed values and refined through repeated iterations, the right
hand side of the above equation is always non-zero.  This non-
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zero value represents the error, or residual in the solution of the
equation in the control volume.

(34)

The total residual is the sum over all cells in the computational
domain of the residuals in each cell.

(35)

Since the total residual, R, defined in this manner, is dependent
upon the magnitude of the variable being solved, it is customary
to either normalize or scale the total residual to gauge its chang-
ing value during the solution process.  While normalization and
scaling can be done in a number of ways, it is the change in the
normalized or scaled residuals that is important in evaluating the
rate and level of convergence of the solution.

3.3.3 Convergence Criteria
The convergence criteria are preset conditions for the (usually
normalized or scaled) residuals that determine when an iterative
solution is converged.   One convergence criterion might be that
the total normalized residual for the pressure equation drop
below 1 x 10-3.  Another might be that the total scaled residual for
a species equation drop below 1 x 10-6.  Alternatively, it could be
that the sum of all normalized residuals drop below 1 x 10-4.  For
any set of convergence criteria, the assumption is that the solu-
tion is no longer changing when the condition is reached, and that
there is an overall mass balance throughout the domain.  When
additional scalars are being solved (heat and species, for exam-
ple), there should be overall balances in these scalars as well.

P
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Whereas the convergence criteria indicate that overall balances
probably exist, it is the wise engineer who will examine reports
to verify that indeed they do.

3.3.4 Underrelaxation
The solution of a single differential equation, solved iteratively,
makes use of information from the previous iteration.  If φn is the
value of the variable from the previous iteration and φn+1 is the
new value, then some small difference or change in the variable
brings the variable from the old value to the new one.

(36)

Rather than use the full computed change in the variable, ∆φ, it is
often necessary to use a fraction of the computed change when
several coupled equations are involved.  

(37)

This process is called underrelaxation, and underrelaxation fac-
tors, f, typically range from 0.1 to 1.0, depending on the com-
plexity of the flow physics (laminar flow or turbulent reacting
flow, for example), the variable being solved (pressure or
momentum), the solution method being used, and the state of the
solution (during the first few iterations or near convergence).
Underrelaxation makes the convergence process stable, but slow-
er.  Guidelines exist for the optimum choices for underrelaxation
factors for a variety of conditions.  As the solution converges, the
underrelaxation factors should be gradually raised to ensure con-
vergence that is both rapid and stable at all times.
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3.3.5 Numerical Diffusion
Numerical diffusion is a source of error that is always present in
CFD, owing to the fact that approximations are made during the
process of discretization of the equations.  It is so named because
it presents itself as equivalent to an increase in the diffusion coef-
ficient.  Thus in the solution of the momentum equation, the fluid
will appear more viscous; in the solution of the energy equation,
the solution will appear to have a higher conductivity; in the solu-
tion of the species equation, it will appear that the species diffu-
sion coefficient is larger than in actual fact.  These errors are most
noticeable when diffusion is small in the actual problem definition.

To minimize numerical diffusion, two steps can be taken.  First,
a higher order discretization scheme can be used, such as the
QUICK or second order upwinding schemes discussed earlier.
Second, the grid can be built so as to minimize the effect.  In gen-
eral, numerical diffusion is more of a problem on coarse grids, so
it is wise to plan ahead and avoid coarse meshes in regions where
the most accuracy is sought.  Numerical diffusion is usually less
of a problem with quadrilateral or hexahedral meshes, provided
the flow is aligned with the mesh.  Unfortunately, the flow is
rarely aligned with the mesh throughout the entire flow field, so
some degree of numerical diffusion is unavoidable.

3.3.6 Time-Dependent Solutions
To solve a time-dependent problem, the time derivative appear-
ing in Eq. (27) must be discretized.  If F(φ) is the spatially dis-
cretized part of Eq. (27), the time derivative can be approximat-
ed to first order as:

(38))(
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In this expression, φn is the solution at time t, and φn+1 is the solu-
tion at time t+∆t.  While certain flow conditions, such as com-
pressible flow, are best suited to an explicit method for the solu-
tion of Eq. (38), an implicit method is usually the most robust and
stable choice for a wide variety of applications, including mixing.
The major difference between the explicit and implicit methods
is whether the right hand side of Eq. (38) is evaluated at the cur-
rent time (F(φ) = F(φn)) or at the new time (F(φ) = F(φn+1)). The
implicit method uses the latter:

(39)

The assumption at the core of this quasi-steady approach is that
the new value of the variable φ prevails throughout the entire
time step, which takes the solution from time t to time t+∆t.

3.4 Parallel Processing
Parallel processing is a procedure in which a large calculation can
be performed on two or more processors working in parallel.  The
processors can reside on the same (multiprocessor) computer, or
can be on a network of computers.  For the calculation to run on
the processors in a parallel fashion, the calculation domain (the
computational grid) must be divided into partitions, or sub-
domains.  The equations in each partition are solved simultane-
ously on the multiple processors (using the segregated or coupled
approach), and the results at the boundaries of the partitions are
communicated to the neighbor partitions on a regular basis.  As
the number of nodes increases, the computation time for each
node decreases, and the communication between partitions
increases.  In this limit, the efficiency of parallel computing
decreases.  Recent advances in parallel algorithms have pushed
back this limiting behavior, however.

INTRODUCTION TO NUMERICAL METHODS
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IV
STIRRED TANK MODELING

USING EXPERIMENTAL DATA

Stirred tanks typically contain one or more impellers mounted on
a shaft, and optionally, baffles and other internals.  While it is a
straightforward matter to build a 3D mesh to contour to the space
between these elements, the mesh must be built so that the solu-
tion of the flow field incorporates the motion of the impeller.
This can be done in two ways.  First, the impeller geometry can
be modeled directly, or explicitly, and the grid and solution
method chosen so as to incorporate the motion of the impeller
using either a steady-state or time-dependent technique.  This
approach is discussed in detail in Chapter V.  Second, the motion
of the impeller can be modeled implicitly, using time-averaged
experimental velocity data to represent the impeller motion.  The
second approach is the subject of this section, which is divided
into the following parts:

Section 4.1: Impeller modeling with velocity data
Section 4.2: Using experimental data
Section 4.3: Treatment of baffles in 2D simulations
Section 4.4: Combining the velocity data model with other physical

models
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4.1 Impeller Modeling with Velocity Data
When modeling the impeller using velocity data, the time-aver-
aged velocities in the outflow of the impeller are prescribed, and
the CFD solver calculates the flow in the remainder of the vessel.
An illustration of this process is shown in Figure 7 for a radial
flow impeller. The parabolic velocity profile in the impeller out-
flow region is prescribed as a boundary condition in the simula-
tion, and the well-known radial flow pattern with circulation
loops above and below the impeller results from the CFD calcu-
lation.  It is important to note that the volume swept by the
impeller is also part of the model but that, other than for the fixed
velocities in the outflow region, it is treated as part of the fluid
domain by the CFD solver. Figure 7 also illustrates the fact that
for this particular case it is indeed sufficient to prescribe the
velocities in the impeller outflow only in order to obtain a good
flow field prediction.  Bakker and Van den Akker (1994) pre-
sented a quantitative validation for this case.

Figure 7
Velocity data
measured radially
outside a radial
flow impeller is
applied to a 2D
CFD simulation,
resulting in the
well known 
double loop 
flow pattern.



Over the years, practical experience has demonstrated that it is
usually sufficient to prescribe the velocity data only along the
edges of the impeller where the flow exits.  One or two edges of
the impeller are typically needed for this purpose. For an impeller
that creates a purely radial flow pattern, such as the radial flow
impeller of Figure 7, prescribing the velocities on the side of the
impeller is sufficient, since flow is drawn into the impeller at the
top and bottom edges.  

In general for all impeller types, all three velocity components
should be prescribed in the discharge region. For turbulent flow
it is also recommended that values for the turbulent kinetic ener-
gy, k and dissipation rate, ε be prescribed. The turbulent kinetic
energy can be computed from measured fluctuations in the veloc-
ity components, using Eq. (12).  Using k, the eddy dissipation can
be calculated using 

(40)

where Lt is a characteristic turbulent length scale in the outflow
of the impeller.  One commonly used relationship is Lt = Wb/4,
where Wb is the width of the impeller blade.

Figure 8 shows where to prescribe the velocity data for various
cases, including the previously discussed radial flow impeller
(Figure 8.1). For a down-pumping impeller that creates a purely
axial flow pattern (Figure 8.2), liquid will enter the impeller from
the top and the side, and exit the impeller on the bottom. In such
a case it is sufficient to prescribe the liquid velocities along the
bottom edge only. For an up-pumping impeller under the same
conditions, the velocities would be prescribed along the top edge.
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When an axial flow impeller operates in the laminar flow regime,
however, it will have a combined axial-radial flow (Figure 8.3).
On the bottom of the impeller, flow both enters and exits depend-
ing on the radial location. Furthermore, flow exits the impeller on
the side. On the top of the impeller, flow enters but does not exit.
Therefore, for this situation the proper modeling method is to
prescribe complete velocity profiles on both the bottom and the
side edges. While it is not in general recommended to prescribe
all velocity components on the top of the impeller as well, for
laminar flow conditions the prediction of the swirling flow pat-
tern in the top of the vessel can be improved by prescribing the
tangential velocity component only along this edge, in addition to
the prescriptions along the side and bottom.  For an up-pumping
impeller, the velocities should be prescribed along the top and the
side edges, with the swirl (optionally) prescribed along the lower
edge for laminar flows only.  

One exception to the rule that velocities should be prescribed in
the impeller discharge region occurs when a down-pumping axial
flow impeller is mounted very close to the vessel bottom (or an
up-pumping impeller close to the liquid surface). Such cases
present several difficulties. On the experimental side, measuring
velocities in regions close to walls can be difficult and may result
in inaccuracies.  In the CFD simulation, there may be only a few
computational cells between the vessel bottom and the impeller.
In these circumstances, good results can often still be obtained if
the velocities are prescribed at the top inflow of the impeller
(Figure 8.4).



4.2 Using Experimental Data
Several experimental methods are available for measuring the
velocities imparted to the fluid by a working impeller.  These
include laser Doppler velocimetry, or LDV, and particle image
velocimetry, or PIV. Under ideal circumstances, the velocity data
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Figure 8
This figure shows where to
prescribe impeller boundary
conditions for:
8.1) a radial flow impeller in
the turbulent flow regime, 
8.2) an axial flow impeller in
the turbulent flow regime, 
8.3) an axial flow impeller
operating in the laminar 
flow regime,
8.4) an axial flow impeller
close to the vessel bottom.

8.1

8.2

8.3

8.4
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prescribed for a simulation would have been obtained from meas-
urements made on an identical system.  In practice, however, this
is rarely the case. The experimental data that is available was
most likely obtained for conditions that are different from the
system being modeled.  Nonetheless, several scaling rules can be
applied to the existing data so that appropriate velocity profiles
for the case at hand can be generated. 

The first step involves the normalization of the available data.
Typically the measured liquid velocities are normalized by the
impeller tip speed, Utip, used during the experiment.  The turbu-
lent kinetic energy is usually normalized by Utip2.  The eddy dis-
sipation can be normalized by Utip3/D, with a possible constant of
proportionality.  Radial measurement locations are typically nor-
malized by the impeller radius, R, and axial locations by the
impeller blade height, z, measured from the impeller centerline.

To perform the simulation, profiles for the liquid velocities, k,
and ε are obtained by multiplying the normalized profiles by the
actual Utip,  Utip2, and Utip3/D,  respectively.  The locations at
which the velocity data are available are calculated by multiply-
ing the normalized measurement locations by the actual impeller
radius or blade height. 

When prescribing the velocity data above or below the impellers,
it is recommended that the computational grid be constructed
such that the center of the cells where the velocities are pre-
scribed, fall within a quarter cell height of the normalized axial
measurement locations. Similarly when prescribing data at the
side of the impeller, it is recommended that the cell centers are
within a quarter cell width of the normalized radial measurement



locations.  For both cases, interpolation can then be used to deter-
mine the velocity values at the radial and axial grid locations of
the individual cell centers, respectively.

The exact shape of the velocity profile in the outflow of an
impeller is not solely dependent upon the impeller itself.  Rather,
it is affected by such variables as the impeller Reynolds number,
impeller off-bottom distance C/T, and impeller diameter D/T. If
the flow is fully turbulent (i.e. Re > 104), the impeller outflow
profiles are typically independent of Reynolds number. If the
flow is transitional or laminar, however, care should be taken so
that the velocity profiles used were either measured at a similar
Reynolds number, or that the prescribed velocities are being
interpolated from datasets measured over a range of Reynolds
numbers. Similarly, for impeller off-bottom clearance and diam-
eter, if data for various C/T and D/T values are available, inter-
polations can be used to obtain the prescribed velocities for the
actual conditions.   

4.3 Treatment of Baffles in 2D Simulations
As mentioned earlier, the time-averaging method used to record
velocity data for an impeller makes the data useful for 2D simu-
lations in the radial-axial plane, where angular- (and therefore
time-) dependence of the geometry and flow field is ignored.
While ignoring the angular dependence of the impeller motion
can be done in this manner, the angular dependence of the baffles
needs to be addressed as well.  Baffles are used to reduce the
swirl introduced by the rotating impeller.  One way of including
this effect in a 2D simulation is to omit the swirling component
of the velocity data in the numerical simulation, using only the
radial and axial components instead.   Another way to model baf-
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fles is to set a boundary condition of zero swirl in the baffle
region in the 2D simulation.  By setting the boundary condition
on the swirl only, the axial and radial velocities can be computed
in the baffle region as they are in the remainder of the vessel.

4.4 Combining the Velocity Data Model with Other 
Physical Models
The steady-state, implicit impeller model, which uses time-aver-
aged experimental data, can be used to model other steady-state
and time-dependent processes, as described below.  Because of
its simplicity, it has no effect on other scalar transport in the
domain.  The models that do require special consideration are
those involving multiple phases, with separate sets of momentum
boundary conditions, as described below.  Species blending is
also discussed, because it is a calculation that is commonly per-
formed in conjunction with the implicit impeller model.

4.4.1 VOF Model
In stirred tank applications, the VOF model is useful for tracking
the shape of the liquid surface during operation.  This includes
the transition to a parabolic shape during startup, which can lead
to the (undesired) drawdown of air.  The velocity data model can
be used in 2D or 3D for simulations of this type.  The VOF model
can have a steady or time-dependent implementation, and both
are fully compatible with this steady-state treatment of the
impellers.

If air drawdown does occur, caution is needed.  If air passes
through cells where large momentum sources exist, resulting
from the velocity data boundary conditions, the liquid/air inter-
face will be broken, resulting in many small bubbles that will mix



with the liquid.  The VOF model is not equipped to handle this
condition accurately, so the simulation should be terminated at
this point.   Thus while the model can be used to predict if draw-
down will occur, it should not be used to predict the flow condi-
tions afterwards.

4.4.2 Multiphase
Both solids suspension and gas sparging can be simulated using
an experimental data model for the impeller.  The manner in
which the multiphase parameters are input depends upon the
multiphase model being used.  For solids suspension, an Eulerian
granular multiphase model is recommended, and separate sets of
momentum equations are used for the liquid and solids phases.
This model, run in a time-dependent fashion, is fully compatible
with the time-averaged representation of the impellers.
Experimental velocity data is set as a boundary condition inde-
pendently for each of the phases. Note, however, that there is usu-
ally some degree of slip between the fluid and granular phases.
Thus the velocities used to represent the impeller for a pure liq-
uid need to be adjusted somewhat for the granular phase.  This
can be accomplished by estimating the slip velocity between the
two phases.  The measured data can be used to represent the
impeller for the fluid phase, and a corrected set of data, obtained
by subtracting the slip velocity from the experimental data, can
be used to represent the impeller for the solids phase.  

Gas sparging can be modeled using the Eulerian multiphase
model or the algebraic slip mixture model.  For the Eulerian mul-
tiphase model, two sets of momentum equations are used, and the
same comments regarding the slip velocity between phases apply,
although the issue is not as critical.  That is, the velocity data used
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for the gas phase could be corrected slightly from the liquid phase
velocities, but need not be because the gas phase has so little iner-
tia compared to the liquid phase.  When the algebraic slip mix-
ture model is used, separate boundary conditions are not required
for the individual phases, so a correction of the velocity data is
not required.

Another consideration in the case of gas-liquid mixtures is the
impact of the impeller on the gas bubble size.  In an actual stirred
tank, the momentum of the rotating impeller often acts to break
up gas bubbles as they pass through the region.  This reduces the
bubble size and can lead to an increase in the gas holdup, as well
as a change in the momentum exchange term (drag) between the
phases.  When experimental data is used, this phenomenon is
missing from the formulation, but can often be incorporated into
the calculation if subroutines, written by the user, are available to
modify the model in the commercial software.

4.4.3 Turbulence
The use of a transient turbulence model, such as the large eddy
simulation model, is inconsistent with the experimental data for-
mulation because the latter is intrinsically steady-state.  All of the
RANS models, however, are fully compatible with the velocity
data approach.

4.4.4 Species Blending
When a neutrally buoyant tracer, one with the same fluid proper-
ties, is added to the liquid in a vessel, a simplified approach to
predicting the mixing time can be used.  Rather than model the
complete set of transport equations in a transient manner, the
steady-state flow field can be computed first, including the



inflow and outflow for the anticipated tracer and resulting mix-
ture, respectively.  Prior to beginning the transient species calcu-
lation for the tracer, the calculation of the flow field variables
(pressure, momentum, and turbulence) can be disabled, since the
overall properties of the mixture will not change.  Thus the dis-
persion of the tracer species can be tracked by solving only a sin-
gle scalar transport equation.  (The same technique can be used
for heat transfer if the properties are the same and not tempera-
ture-dependent.)  This method for computing species blending is
fully compatible with the experimental data representation of the
impellers.
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V
STIRRED TANK MODELING

USING THE ACTUAL
IMPELLER GEOMETRY

To model the geometry of the impeller exactly, a 3D simulation
must be performed.  A number of solution approaches are avail-
able to incorporate the motion of the impeller, and the computa-
tional grid used must be able to adapt to the solver method
employed.  The models in popular use today are reviewed  in the
following sections:

Section 5.1: Rotating frame model
Section 5.2: Multiple reference frames model
Section 5.3: Sliding mesh model
Section 5.4: Snapshot model
Section 5.5: Combining the geometric models with other 

physical models

Particular attention is paid to the sliding mesh model, the most
rigorous of them all.  The solver methods described are all
designed to capture the motion of a rotating impeller in a station-
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ary tank, but they vary in accuracy.  Three of the models are
steady-state and one is time-dependent. 

5.1 Rotating Frame Model
The rotating frame model solves the momentum equations for the
entire domain in a rotating frame.  The Coriolis force is included
in the process.  Problems solved in a rotating frame typically use
the angular velocity of the primary rotating component, Ω, as the
angular velocity of the frame.  In stirred tanks, the impeller serves
this purpose, so the frame is assumed to rotate with the impeller.
Thus the impeller is at rest in the rotating frame.  The tank, how-
ever, rotates in the opposite direction, so must have a rotational
boundary condition of -Ω.  If baffles exist, they would need to
rotate into the fluid with the same angular velocity, -Ω.
Unfortunately, this simple steady-state model is not equipped to
handle the motion of elements such as baffles into or through the
fluid.  The approach is therefore only useful for unbaffled tanks
with smooth tank walls that are geometrically equivalent to a per-
fect surface of revolution.  Thus an unbaffled cylindrical tank
with an axisymmetric bottom shape and no angular-dependent
internals could be simulated in this manner.  Vessels with baffles,
dip tubes, or inflow/outflow ports could not.

5.2 Multiple Reference Frames Model
A modification of the rotating frame model is the multiple refer-
ence frames, or MRF model (Luo et al., 1994).  The modification
is that more than one rotating (or non-rotating) reference frames
can be used in a simulation.  This steady-state approach allows
for the modeling of baffled stirred tanks and tanks with other
complex (rotating or stationary) internals.  A rotating frame is
used for the region containing the rotating components while a



stationary frame is used for regions that are stationary (Figure 9).
In the rotating frame containing an impeller, the impeller is at
rest.  In the stationary frame containing the tank walls and baf-
fles, the walls and baffles are at rest.  The fact that multiple ref-
erence frames can be used means that multiple impeller shafts in
a rectangular tank can each be modeled with separate rotating
frames (with separate rotation frequencies) while the remaining
space can be modeled with a stationary frame.  

The grid used for an MRF solution must have a perfect surface of
revolution surrounding each rotating frame.  The momentum
equations inside the rotating frame are solved in the frame of the
enclosed impeller while those outside the rotating frame are
solved in the stationary frame.  A steady transfer of information
is made at the MRF interface as the solution progresses.  While
the solution of the flow field in the rotating frame in the region
surrounding the impeller imparts the impeller rotation to the
region outside this frame, the impeller itself does not move dur-
ing this type of calculation.  Its position is static.  If the impeller
is mounted on a central shaft in a baffled tank, this means that the
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orientation of the impeller blades relative to the baffles does not
change during the solution.  If the interaction between the
impeller and baffles is weak, the relative orientation of the
impeller and baffles does not matter.  If the interaction is strong,
however, the solution with the impeller in one position relative to
the baffles will be different from that with the impeller in a dif-
ferent position.  The model is therefore recommended for simu-
lations in which the impeller-baffle interaction is weak.  Note
however, that if the solution is to be used to obtain spatially aver-
aged, macroscopic properties of the flow field, such as power
draw, the orientation of the impeller relative to the baffle may not
matter.  The careful engineer will perform two solutions with the
impeller in two different locations and use both results (averag-
ing them, for example) rather than just one.

A modified version of the MRF model is the mixing plane model,
in which the variables at the MRF boundary are spatially aver-
aged in the circumferential direction prior to being passed from
one side to the other.  After the averaging process, all angular
dependence on the boundary is eliminated, so the variables are
functions of radial and axial position only.  This approach is pop-
ular for turbomachinery, where many closely spaced rotors and
stators are in relative motion.  It has not had widespread use in
the mixing community, however, owing in part to asymmetries in
the flow field that are common in stirred tanks.  For example, a
tracer species introduced through a single dip tube on the side of
the vessel would appear to be uniformly distributed on the inter-
face shortly after reaching it, which is clearly unphysical.  As
another example, any stirred tank with inflow and outflow ports
could have flow through the MRF interface that is not unidirec-
tional.  When the averaging process is done, this condition could



also result in unphysical results.  The mixing plane approach is
therefore not recommended for most stirred tank applications.

5.2.1 Validation of the MRF Model
To validate the MRF model, a Lightnin A310, operating in a baf-
fled vessel (Re = 4.6 x 105), was simulated using a number of tur-
bulence models (Marshall, et al., 1999).  Results for the velocity
field, power number and flow number were compared to meas-
urements performed by Weetman (1997).   The vessel used for
the simulation had a diameter T = 1.22m (Figure 10.1).  The
A310 impeller (with surface grid shown in Figure 10.2) had a
diameter and off-bottom clearance of D/T = C/T = 0.352.  A 120°

sector of the domain was modeled using a grid of approximately
150,000 hexahedral cells.  

Figure 11 shows a comparison of the velocity data from the LDV
measurements with the velocities in a non-baffle plane computed
by the MRF model, using RSM for turbulence.  The CFD calcu-
lation picks up the features of the flow field correctly.  In Table
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Tank containing an A310 impeller (10.1) and grid detail for the impeller 
surface (10.2).
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3, the results for flow number, NQ (Section 6.4.2), and power
number, NP (Section 6.4.1), show good agreement for all turbu-
lence models.  The power drawn by the impeller was computed
by integrating the pressure on the impeller blades to obtain the
torque.  The flow rate was computed by integrating the flow
through a circular discharge area below the impeller.

Figure 11
Experimental data from Weetman
(1997) (11.1) and the CFD solution
using the MRF model for the impeller
and RSM for turbulence (11.2).

11.1

Turbulence Model NQ NP

Experiment* 0.56 0.30

Standard k-ε 0.50 0.30

RNG k-ε 0.53 0.28

Realizable k-ε 0.52 0.29

RSM 0.51 0.29
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Table 2
Results of the MRF
impeller model with
several turbulence 
models as compared to
experiment (*Experimental
data provided by the impeller
manufacturer).
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5.3 Sliding Mesh Model
The sliding mesh model is a time-dependent solution approach in
which the grid surrounding the rotating component(s) physically
moves during the solution (Figure 12).  The velocity of the
impeller and shaft in the moving mesh region is zero, as is the
velocity of the tank, baffles, and other internals in the stationary
mesh region.  The motion of the impeller is realistically modeled
because the grid surrounding it moves as well, giving rise to a
time-accurate simulation of the impeller-baffle interaction.  The
motion of the grid is not continuous.  Rather, it is in small, dis-
crete steps.  After each such motion, the set of conservation equa-
tions is solved in an iterative process until convergence is
reached.  The grid moves again, and convergence is once again
obtained from an iterative calculation.  During each of these
quasi-steady calculations, information is passed through the
interface from the rotating to the stationary regions and back again.

In order to rotate one mesh relative to another, the boundary
between the meshes needs to be a surface of revolution.  When in
its initial (unrotated) position, the grid on this boundary must
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have two super-imposed surfaces.  During the solution, one will
remain with the rotating mesh region, and the other will remain
with the stationary mesh region.  At any time during the rotation,
the cells will not (necessarily) line up exactly, or conform to each
other.  When information is passed between the rotating and sta-
tionary grid regions, interpolation is required to match each cell
with its many neighbors across the interface.

The sliding mesh model is the most rigorous and informative
solution method for stirred tank simulations.   Transient simula-
tions using this model can capture low frequency (well below the
blade passing frequency) oscillations in the flow field (Bakker et.
al., 2000 and Roussinova et al., 2000) in addition to those that
result from the periodic impeller-baffle interaction.

5.3.1 Solution Procedures
Because this is a transient model involving the motion of the
impeller, starting the simulation with the impeller at rest is anal-
ogous to modeling start-up conditions.  After a period of time the
flow field reaches periodic steady-state, but this period of time
may correspond to dozens of revolutions.  If the goal of the sim-
ulation is to study the periodic steady state conditions, minimiz-
ing the time spent reaching this state is desirable.

One way to rapidly pass through the start-up conditions is to
move the impeller by large increments each time step in the early
stage of the calculation.  If the model is a 90° sector, for example,
the first few revolutions of the impeller can be modeled using a
coarse time step that corresponds to a 30° displacement.  The time
step can then be refined to correspond to a 10° displacement, and
refined again (and again) until the desired temporal and spatial



accuracy is achieved.  The solutions during these initial coarse
time steps do not need to be perfectly converged, provided the
simulation involves a single fluid phase and there are no inflow
and outflow boundaries.  In these instances, improved conver-
gence can be obtained in the later stages of the calculation.

An alternative way to by-pass the calculation of the start-up peri-
od is to solve for a steady-state solution first using the MRF
model.  The MRF model (Section 5.2) provides a solution for the
moving impeller at a fixed orientation relative to the baffles.
Tools are available in commercial codes to use the solution data
from the MRF simulation and apply it to the sliding mesh simu-
lation as an initial condition.  A moderately coarse time step can
be used initially (say, corresponding to a 10° rotation, as in the
above example) and reduced at a quicker rate than would other-
wise be advisable.  This approach can also be used if there are
inflow and outflow boundaries present or if a multiphase calcu-
lation is to be performed.  In the case of multiphase flows, how-
ever, care must be taken to wait until the periodic steady-state
condition has been reached before introducing the secondary phase.

5.3.2 Validation of the Sliding Mesh Model
One validation of the sliding mesh model was presented in a
paper by Bakker, et al. (1997).  A pitched blade turbine was oper-
ated in a baffled vessel with diameter T = 0.3m under laminar
conditions (Re = 40).  The impeller diameter and off-bottom
clearance were such that D/T = C/T = 1/3.  A 90° sector of the
stirred tank was modeled using approximately 50,000 cells.  

Figure 13 shows a comparison between LDV data on the left and
CFD results on a mid-baffle plane on the right.  Because the
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impeller was operating at a low rotational speed, its discharge
was more radial than axial.  This structure is captured by the CFD
model, in agreement with the experimental data, where circula-
tion loops above and below the impeller can be seen.  Turbulent
calculations for this system operating at higher Reynolds num-
bers were also performed.  Results for the flow number (Section
6.4.2), computed throughout both laminar and turbulent regimes,
are in excellent agreement with values based on LDV measure-
ments, as shown in Figure 14.  

Figure 13
Comparison of
LDV data (left) 
and sliding mesh
CFD results (right).
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5.3.3 Unstable Flows
In recent years, much attention has been paid to instabilities that
are observed in stirred tanks.  These instabilities typically have
frequencies that are low compared to the impeller frequency, and
involve the slow asymmetric wobble of material or momentum
from one side of the vessel to the other.  Instabilities of this type
can be predicted using the sliding mesh technique on a 360°

model of a stirred tank, particularly if the LES turbulence model
is used (Bakker et al., 2000 and 2001).

5.4 Snapshot Model 
The snapshot model (Ranade, 1996) is a steady-state approach
that captures the flow field at a single instant in time, when the
impeller position relative to the baffles is fixed.  When the
impeller is rotating, the leading face of the blade exerts a force on
the fluid in front of it, and acts to push the fluid away.  Behind
the rotating blade, there is a void of low pressure, which acts to
pull the surrounding fluid in.   These two complementary func-
tions can be represented as balanced mass sources in front of and
in back of the impeller blade, and this premise is the basis of the
snapshot model.  A grid is built with the impeller in one position
relative to the baffles,  and a steady-state solution is performed.
Mass sources in front of and behind the impeller blade are used
to simulate the action of the impeller as if it were rotating.  The
flow field is therefore characteristic of a fully developed flow for
a rotating impeller, but is limited to a snapshot of the motion
when the impeller is in the single position described by the model.

5.5 Combining the Geometric Impeller Models with Other
Physical Models
The geometric impeller models described above can be used to
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model both steady-state and time-dependent processes, but atten-
tion must be paid to the time-scales, where appropriate, and other
special requirements of each.  In this section, some of these con-
siderations are reviewed for the two most popular of the geomet-
ric formulations: the MRF and sliding mesh models.  

5.5.1 VOF Model
In stirred tank applications, the VOF model is useful for tracking
the shape of the liquid surface during operation.  Even though the
steady-state shape of the surface is usually of interest, a transient
VOF formulation is usually the best way to obtain it.  With this
in mind, either the steady-state MRF or transient sliding mesh
model can be used for this purpose.  If the MRF model is used,
the gradual change in the free surface can be predicted using the
VOF method.  Note, however, that because the orientation of the
impeller relative to the baffles is fixed, any irregularities in the
free surface that result from the impeller rotation will not be cap-
tured.  If these details are important, the sliding mesh model
should be used.  

When the VOF model is solved in conjunction with the sliding
mesh model, the smallest required time step for the two models
must be used.  Since a smaller time step is often required for the
VOF calculation than for the sliding mesh calculation, this means
that the motion of the impeller will advance in time at a slower
rate than is necessary for a calculation involving the sliding mesh
model alone.  One way to circumvent this problem is to use the
sliding mesh model to obtain periodic steady state conditions
using a single fluid first, and then introduce the second fluid with
the VOF model and continue the transient calculation until a new
periodic steady state is reached.  For simple cases in which the



free surface is axisymmetric, an implicit impeller model using
fixed velocity data (Chapter IV) may be preferable for use with
the VOF calculation.

5.5.2 Multiphase
Gas-liquid or liquid-solids mixtures can be solved using the
Eulerian multiphase or ASM model in conjunction with either the
sliding mesh or MRF model.  Whereas the common goal of free
surface modeling using VOF is to obtain the steady-state shape of
the liquid interface, the goal of multiphase modeling can be to
examine the unsteady behavior of the mixture as well as to pre-
dict the final settling of solids or final gas holdup.  The advantage
of using the MRF model is that its steady-state basis can be com-
bined with the time-stepping needed for complex multiphase
flows.  The disadvantage, however, is that the fixed orientation of
the impeller blade with the baffles introduces error in the tran-
sient behavior by ignoring the impact of the impeller-baffle inter-
action on the flow.  

For cases in which the transient behavior of the process is of
interest, the sliding mesh model should be used instead.  Here,
the same issues apply that are important for VOF modeling.
Generally speaking, a smaller time step is required for the
Eulerian multiphase model than for the sliding mesh calculation.
It is good practice to obtain a periodic steady state solution of the
single phase liquid first using the sliding mesh model prior to
introducing the additional phases.  The development of the solids
suspension or gas holdup can then be computed most accurately
in the presence of the rotating impeller.
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5.5.3 Turbulence
As was discussed in Chapter II, there are several steady-state tur-
bulence models in widespread use today.  These so-called RANS
models address a time-averaged state of the fluid such that all tur-
bulent fluctuations are represented by averaged values.  The
RANS models are often used with both the MRF and sliding
mesh models, as well as with many other transient models used
in CFD analysis.  This practice is justified in part because the
time scales of turbulence fluctuations are assumed small com-
pared to those of the other processes being modeled, such as the
blade passing time in a stirred tank.   It has also been justified
because until recently, other more rigorous treatments have not
been available in commercial software or solvable in a realistic
time on the computers of the day.

The large eddy simulation, or LES model (Section 2.1.3), is a
fairly recent model to appear in commercial software.  It offers
considerably more rigor than the RANS models.  It makes use of
a steady-state model for the smallest turbulent eddies, but treats
the large scale eddies in a transient manner.  The use of LES is
inconsistent with the use of the MRF modeling approach,
because the approximation introduced with the MRF model is on
a longer time scale than the detail offered by the LES calculation.
The use of LES with the sliding mesh model, on the other hand,
is a powerful combination that has demonstrated great potential
for capturing not just small scale fluctuations, but large scale
fluctuations as well, including instabilities with frequencies that
are several times larger than the impeller rotation frequency
(Bakker et al., 2000 and 2001). 



5.5.4 Species Transport
When the sliding mesh model is used, species blending can be
tracked along with the transient motion of the impeller.  The
species is normally introduced after the system has reached peri-
odic steady state, but need not be.   If an inflow boundary is to be
used for species calculations after periodic steady state has been
reached, it should be assigned the velocity of the species jet
(using the background fluid) during the start-up period.  One
method that can be used to hasten the calculation during the start-
up period is to start with a solution based on the MRF model, as
is discussed in Section 5.3.1.

When the MRF model is used, transient species transport should
be done with great care or avoided altogether.  This is due to the
fact that the velocities in the rotating frame, whether stored in the
local or absolute frame, will give rise to erroneous behavior when
they are used to convect a scalar in a transient manner.  Graphical
displays of the species distribution are suspect, even though the
method can accurately capture the average species concentration
as a function of time in the vessel as a whole. 

5.5.5 Dispersed Phase Particle Tracking
The dispersed phase model, discussed in Section 2.2.2, allows for
the coupled motion of a particle, bubble, or droplet stream with
the fluid phase.  When used with the sliding mesh model, the tra-
jectories are computed in segments, with one segment per time
step.  The solver must ensure that the total time of each trajecto-
ry segment does not exceed the duration of the time step.  If this
condition is met, the particles can cross the sliding mesh interface
without any incompatibility in the assumptions of either model.
When combined with the MRF model, however, the implementa-
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tion must be able to incorporate the particle motion in the rotat-
ing frame as well.  While there are techniques for doing so, it is
not clear that the results are meaningful in all reference frames.
This combination of models should therefore be avoided.
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VI
EVALUATING MIXING FROM

FLOW FIELD RESULTS

While there are numerous options for simulating the fluid flow
inside a stirred tank, the goal of the simulation is to learn about
the various aspects of the flow field.  On a simple level, this
might include velocity vectors in one or more regions, path lines
followed by infinitesmal fluid elements as they wind their way
through the vessel, or the distribution of a tracer species after
some period of time has passed, for example.  On another level,
the analyst might want to understand the power requirements for
the motor, the time required to achieve adequate blending, or the
fate of vortices trailing from the edges of the impeller blades.
This type of information and more can generally be extracted
from the CFD results, or can be obtained from auxiliary CFD cal-
culations based on those results.  To illustrate how, the following
sections are presented that offer summaries and examples:  

Section 6.1:  Graphics of the solution domain
Section 6.2:  Graphics of the flow field solution
Section 6.3:  Other useful solution variables
Section 6.4:  Mixing parameters

EVALUATING MIXING FROM
FLOW FIELD RESULTS
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These sections are designed to provide an overview of several of
the methods used to make CFD analysis of mixing a meaningful
endeavor.

6.1 Graphics of the Solution Domain
A stirred tank can be displayed in a number of ways to illustrate
the relevant features of the vessel and its internals.  These are
described below.

6.1.1 Geometry Outline
Perhaps the simplest method for displaying the vessel is to draw
an outline of the geometry.  An outline consists of the features of
the tank and internals, but little else.  For 2D simulations either a
side view or dotted lines (or both) can be used to represent the
impeller and the location where the experimental data is applied
to represent it.  For 3D simulations modeled using the explicit
geometry, all edges are shown.  

6.1.2 Surfaces
In addition to the features shown in an outline, the surfaces can
also be drawn.  If solid surfaces are used for the tank, the viewer
cannot see inside unless the viewpoint is through an opening in
the side or the top (Figure 15).  Alternatively, solid surfaces can
be used for the internals and translucent surfaces can be used for
the vessel walls (Figure 10.1).  When displayed with lighting, the
image can accurately convey the three dimensional nature of the
entire geometry.



6.1.3 Grids
For 2D simulations, a display of the grid (Figure 1.2) is an excel-
lent way of illustrating the potential level of accuracy in the solu-
tion.  A coarse grid, despite a deeply converged solution, cannot
deliver accuracy on a scale any finer than the grid itself.  A fine
grid, however, has the potential to deliver a much better resolved
flow field, assuming the solution is adequately converged.  Most
grids are non-uniform, with fine and coarse grid regions.  The
fine (and coarse) grid regions show the areas where the most (and
least) accurate details can be expected.

For 3D simulations, displays of the grid are more difficult to do
in a meaningful way.  When the grid is structured, a single grid
plane can be displayed.  In addition to showing the distortion in
the grid (if the grid plane is distorted), this type of display can
also show fine and coarse grid regions.  For unstructured grids,
single grid planes do not exist.  A cut through the solution domain
on, say, a surface of constant x-value, shows the cross section
through a number of cells, and is not necessarily helpful.  A more
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Figure 15
Geometry using
solid surfaces 
with a cut in the
wall and top to
look inside.
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common approach is a display of the surface grid in 3D simula-
tions (Figure 10.2).   If the surface grid is fine (or coarse) in a
region, the chances are good that the volumetric mesh in that
region is fine (or coarse) as well.

6.2 Graphics of the Flow Field Solution
There are many ways to examine the flow field results, some of
which are described below.

6.2.1 Vectors
Velocity vectors can be used to illustrate the magnitude and
direction of the flow field throughout the solution domain.  For
2D simulations, a plot of all velocity vectors gives an overall pic-
ture of the fluid behavior.  For 3D simulations, a plot of all vec-
tors in the domain is too crowded to be useful.  Vectors need to
be plotted on one or more planes or surfaces, instead, as is shown
in Figure 11.2 and again in Figure 13.  Note that the planes can
be single grid planes (e.g. J = 10) or Cartesian grid planes (x =
3.5m).  Surfaces can be planar or non-planar, such as a surface of
constant temperature or a surface of constant radius.  The impor-
tant point is that for vector plots to be meaningful, the vectors
(with length and orientation) need to be clearly visible, so the sur-
faces or planes used to plot them need be chosen accordingly.

6.2.2 Streamlines
In 2D simulations, a quantity called the stream function, ψ, is
defined in terms of the density and gradients of the x- and y-com-
ponents of the velocity, U and V.  In terms of cylindrical coordi-
nates, which are most appropriate for axisymmetric stirred tank
models, the definition takes the form:



(41)

where U and V are the axial and radial components of velocity.
The stream function is constant along a streamline, a line that is
everywhere tangent to the velocity field.  When defined in the
above manner, ψ incorporates a statement of conservation of
mass.  The difference between the stream function defined on any
two streamlines is equal to the mass flow rate between the
streamlines.  Thus when a pair of streamlines has close spacing,
the implication is that the velocity is greater than when the same
pair has wide spacing, since the same amount of mass must pass
through the space between the lines.  Streamlines therefore have
the ability to convey not only the relative movement of the flow,
but the relative speed as well.  In Figure 16, streamlines in a 2D
simulation of a stirred tank are close as they pass through the
impeller, where the boundary conditions are imposed and the
flow speed is high. They are also close along the outer wall, but
are more widely spaced elsewhere, where the flow recirculates in
a larger area at a much slower speed.
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Figure 16
Streamlines for a
2D simulation of 
a pitched-blade
impeller with a 
single recirculation
zone showing 
high and low 
speed regions.
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6.2.3 Path Lines
Since the stream function is only defined for 2D flows, an alter-
native method is needed to visualize 3D flows in the same man-
ner.  Path lines can be used for this purpose.  Path lines follow the
trajectories that would be followed by massless particles seeded
at any location within the domain.  These particles move with the
flow field, and leave behind tracks in one form or another that
allow the flow field to be visualized.  In Figure 17, path lines are
used to illustrate the flow through a static mixer.  Path lines can
be drawn as simple lines or as tubes, ribbons, or a series of dots.
They can usually be colored by problem variables, such as tem-
perature.  When colored by time, they give information on resi-
dence time if inflow and outflow of fluid are involved.

6.2.4 Contours
Contours are lines where a chosen variable has a constant value.
The streamlines illustrated in Figure 16 are actually contours of
stream function, since ψ is constant on each of the lines shown.
In addition to line contours, filled contours, plotted on an entire
2D domain or on a surface in a 3D domain, are also very useful
for showing the maximum and minimum values as well as local

Figure 17
Path lines, colored by velocity
magnitude, are used to illustrate
the flow through an HEV static
mixer.



gradients.  In Figure 18, contours of a tracer species are shown on
a cross section through a 3D domain.

6.2.5 Isosurfaces
Isosurfaces in 3D flow fields are analogous to contour lines in a
2D flow field.  These three dimensional surfaces are constructed
in such a way that a particular variable has a constant value
everywhere on it.  If the isosurface has a constant value of the
Cartesian coordinate x, for example, it is planar.  If it has a con-
stant value of velocity in a stirred tank, it is complex in shape and
can have several disconnected regions.  Isosurfaces of this type
can be plotted as solid surfaces with lighting (Figure 19), to con-
vey the three dimensional nature of the variable distribution.
They can also be used to plot contours, showing how one variable
changes as another one is held fixed.  
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Figure 18
Filled contours of a
tracer species shown
on a planar surface
in a 3D domain.
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6.2.6 Particle Tracks
Whenever the discrete phase model is used (Section 2.2.2), parti-
cle tracks can be used to illustrate the trajectories of the particles,
bubbles, or droplets.  Trajectories usually can be displayed in a
number of ways.  For example, lines can be colored by the time
of the trajectory or temperature of the particle itself.  In addition
to lines, ribbons and tubes can generally be used.  The tracks can
be computed and displayed using the mean fluid velocities, or in
the case of turbulent flows, using random fluctuations in the
mean fluid velocities as well.  These so-called stochastic tracks
often give a more realistic picture of the extent to which the par-
ticles reach all corners of the solution domain than do tracks com-
puted from the mean velocities alone.

Figure 19
The dispersion of a tracer in a stirred tank. A blob of tracer is injected
at time zero, and its dispersion is shown after 1/4, 1/2, 3/4, 1, 1-1/4, 
1-1/2, 1-3/4, and 2 impeller revolutions, respectively.
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6.2.7 Animations
Animations can be created from groups of image files that follow
a process from beginning to end, or during some period of oper-
ation.  They can also be used to follow the motion of massless
particles in a steady-state flow field.  Numerous postprocessing
packages are commercially available for the creation of anima-
tions, and many CFD packages have built-in functionality to do
so as well.  

Types of Animations
Some examples of how animations can be used for displaying
flow field results are listed below.  In general, anywhere from
twenty to hundreds of images, or frames can be created and con-
catenated, or joined together to form the animation.  The content
of these images is a function of whether the simulation is steady-
state or time-dependent, and on what the display goals are intend-
ed to be.  In general when creating animations, care should be
taken to avoid incorporating too much information into a single
image, since some of this information will inevitably be lost on
the viewer.

Time-Dependent Simulations
For time-dependent flow fields, images should be made at uni-
form time intervals for the purpose of creating a meaningful ani-
mation.  Examples of time-dependent animations include 

· contours of tracer concentration on a single plane during 
blending

· velocity vectors on a plane during a turbulent simulation 
modeled using large eddy simulation

· gas from a sparger filling a stirred tank or a bubble column
· lifting and suspension of solids off the vessel floor in a 

stirred tank
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· isosurfaces of vorticity trailing from a rotating impeller in
a sliding mesh model

Path Lines
Path lines are normally created by a simultaneous calculation and
display of trajectories, using the problem geometry and flow field
data.  To generate an animation of evolving path lines, frames of
the trajectories at intermediate stages need to be created and
stored.  To do this, a total time for the animation needs to be
determined along with a number of frames to be made.  Tools are
available in most visualization packages to generate the interme-
diate frames based on these inputs, using dots, lines, or other geo-
metric entities.  The intermediate frames can be written to files in
one of a number of available formats.   When played in succes-
sion, the concatenated frames will mimic the display that is gen-
erated by the original visualization software.

Moving Slice Planes
One method of illustrating the change in a variable throughout a
3D domain is through the use of animated slices.  For example,
in a stirred tank, the velocity field at different angular locations -
from one impeller blade to the next or from one baffle to the next
- might be of interest.  Planar slices at equal angle intervals can
be used for each frame, on which either contours or in-plane
velocity vectors are displayed.  A series of axial slices is another
useful way to examine the change in a variable from one end of
a mixer to another.  This type of animation is particularly useful
for static mixers.

Moving Iso-Surfaces
When injecting a tracer, one method of following its evolution is



by animating isosurfaces of the tracer mass fraction.  The anima-
tion is made most effective if the same numerical value is chosen
for each frame.  The value should be small in magnitude so that
the expanding surface at later times can be captured.  If the data
for all times exists prior to the creation of the images, the data for
the first and last times should be used to plan the best isosurface
value to track for the duration of the process.  When plotted as a
solid surface with lighting, the three-dimensional nature of the
isosurface is easy to discern and the effect makes for an exciting
and informative animation.

Moving Impeller Blades
In stirred tank animations, it is always helpful if the motion of the
impeller can be animated as well.  This is possible in sliding mesh
simulations, where the changing position of the impeller can be
captured in successive frames.  Some animation software can
extract this motion from MRF simulation data, where the rotation
speed of the impeller is known.  Based on the time interval
between frames, the impeller is advanced by a computed angle in
each display created.  When the frames are animated, a continu-
ous motion of the impeller can be seen, along with other animat-
ed variables, such as path lines or changing contours on a sta-
tionary surface.

Moving Viewpoint
For steady-state external flows, animations based on a moving
viewpoint are popular.  These animations can also be used to
illustrate the complex geometry of a system, such as a stirred tank
and its internals.  Beginning with a distant view, the camera can
approach the object and peer inside to get close-up views of the
components.
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Creating Animations from a Collection of Images
Numerous commercial software packages are available today for
creating an animation from a collection of images. Different
image file formats are available for this purpose.  Once the
images have been concatenated to form the animation, tools are
available in most animation packages to set the speed of the ani-
mation.  A choice of about 0.05 seconds between frames usually
results in a smoothly playing animation, but this also depends on
the number of frames and the capabilities of the computer.  It
should be noted that the time interval mentioned here refers to the
playing time, not the physical time between the data used for
each frame display.

6.3 Other Useful Solution Variables
In the previous section, methods of plotting several common
solution variables, such as velocity, stream function, and species
concentration were discussed.  Plots of turbulent kinetic energy
and dissipation are also of interest in turbulent flows, especially
if other processes such as chemical reactions are to take place.  In
multiphase flows, the volume fraction of the phases is the most
useful tool to assess the distribution of the phases in the vessel.
In this section, three additional quantities are reviewed that are
derived from the velocity field.  These can provide a deeper
understanding of the flow field than plots of the velocity alone.

6.3.1 Vorticity
Vorticity, a vector quantity, is a measure of the rotation of the
fluid.  In terms of a fluid element, a non-zero vorticity implies
that the element is rotating as it moves. The vorticity is defined
as the curl of the velocity vector, u:

(42)U×∇=   ξξ
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Vorticity can be defined in both 2D and 3D flows.  In 2D flows,
the direction is normal to the plane of the simulation.  This means
that for a 2D, axisymmetric simulation of flow in a stirred tank,
the vorticity is always in the circumferential direction.  

(43)

In 2D simulations, positive values indicate counter clockwise
rotations, while negative values indicate clockwise rotation.  In a
3D simulation, vorticity can take on any direction, and plots of
vorticity magnitude, rather than the individual components, are
often the most helpful.  The units of vorticity are sec-1, the same
as those used for shear rate.  In Figure 20.1, contours of vorticity
are shown for a 2D flow in a stirred tank with velocity vectors
superimposed on the display.  White regions have a maximum

positive value and black regions have a maximum negative value.
Regions where steep normal gradients in the velocity occur (near
the outer walls and impeller) are shown to have the maximum
values of vorticity, as expected.  The fact that the vorticity is pos-
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Figure 20
Contours of vorticity in a 2D simulation with superimposed velocity vectors
(20.1) and isosurfaces of vorticity magnitude behind a Rushton turbine (20.2).
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itive near the impeller and negative near the wall indicates sim-
ply that the direction of the curl is opposite in these two regions.
In Figure 20.2, isosurfaces of constant vorticity magnitude in a 3D
simulation show the trailing vortices behind a Rushton impeller.
The simulation was performed using the LES turbulence model.

6.3.2 Helicity
The helicity is defined as the dot product of the velocity vector
with the vorticity vector:

(44)

Clearly, the helicity has a value of zero in 2D simulations.  In 3D
simulations, it gives an indication of how well the local rotation
of a fluid element is aligned with the velocity of the element.  It
is useful for illustrating longitudinal vortices, or spiral motion, as
is often found in vortex cores.  In Figure 21, isosurfaces of helic-
ity are used to depict the longitudinal vortices generated in the
Kenics static mixer described in Section 7.10.

6.3.3 Rate of Deformation
The rate of deformation, or strain rate tensor is a collection of
terms that together describe the complete deformation of a fluid
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Figure 21
Isosurfaces of helicity are used to
show the longitudinal vortices in a
Kenics static mixer.

)(      UUUH ×∇•=•= ξξ



element in motion.  The deformation can be the result of linear
strain, which gives rise to a linear deformation or stretching of
the element, and shear strain, which gives rise to an angular
deformation or change in shape of the element.  The symmetric
tensor has components of the generalized form:

(45)

While the tensor components themselves offer little insight into
the behavior of the flow field, functions of the tensor components
often do.  In terms of the Cartesian coordinates x, y, and z, the
diagonal terms are:

(46)

Each of these terms represents a linear strain rate, or rate of elon-
gation of the fluid element in each of the three coordinate direc-
tions.  The sum of these diagonal terms is the trace, or first
invariant of the tensor.  For incompressible fluids, this quantity is
always zero, since the volume of the fluid element must be 
conserved.

In addition to the trace, another quantity, often referred to simply
as the strain rate, is of interest.  The strain rate, taken from the
modulus of the tensor, is a positive-definite representation of all
possible components of the strain rate tensor.  It is used to deter-
mine the viscosity in strain-dependent non-Newtonian fluids, and
is also helpful as a reporting tool for mixing applications.  In par-
ticular, regions with high strain rate play an important role in liq-
uid dispersion. 
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6.4 Mixing Parameters
Parameters that are used to characterize stirred tank flows and
mixing processes in general can be computed by correlations that
can be found in the literature.  In many cases, these parameters
can also be computed from the CFD results.  Examples of how to
compute some of these parameters are given below.

6.4.1 Power Number
The power number is a dimensionless parameter that provides a
measure of the power requirements for the operation of an
impeller.  It is defined as

(47)

In the above expression, P is the power applied to the impeller of
diameter D, ρ is the density, and N is the impeller rotation speed,
in Hz.  Correlations are available that provide the dependence of
NP on the Reynolds number.  Thus if CFD is not available, the
power requirements can generally be obtained from one of these
correlations.  The correlations can break down, however, if they
do not address the D/T or C/T ratios of single impellers or the
presence and spacing of multiple impellers.  In such cases, CFD
results can be used to compute NP, or simply, the power 
requirements.  

The power delivered to the fluid is the product of the impeller
speed, 2πN, in radians/sec, and torque, τ, which is obtained by
integration of the pressure on the impeller blade:

(48)

Reports are usually available for the torque delivered to the fluid

τπNP 2=

53DN
PN P ρ

=
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by the impeller.  In some cases, reports of power or even power
number can be obtained from the software.

Integration of the Dissipation
In principle, the power delivered to the mixer is equivalent to that
lost, or dissipated in the fluid.  An integration of both the viscous
and turbulent dissipation throughout the volume should, there-
fore, be an acceptable way to compute the power draw.  The dis-
sipation rate predicted by the various turbulence models can vary
significantly, however, and there is no guarantee that the turbu-
lence model that gives the best flow pattern prediction also gives
the best dissipation rate prediction.  For laminar flows, even with
a refined mesh near the impeller blades, CFD can have difficulty
predicting viscous dissipation in a satisfactory manner.  For this
reason, the best method for extracting the power drawn by the
impeller is by calculation of the torque on the blade surfaces. 

6.4.2 Flow Number
The flow number is a measure of the pumping capacity of an
impeller.  Different measures for pumping capacity exist, but the
flow number is widely used.  It is defined as:

(49)

In this expression,    is the flow rate produced by the impeller.
The subscript is used to ensure that the flow rate for the liquid
phase alone is used in the calculation.  To compute    for an
impeller, a surface needs to be created for the discharge region.
This surface would be circular for an axial flow impeller and a
section of cylinder wall for a radial flow impeller.  By integrating
the total outflow through this surface, the flow rate,     , and sub-
sequently the flow number, NQ, can be obtained.
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6.4.3 Evaluating Mixing Time
A transient blending calculation is the best method for determin-
ing the time required to achieve a certain level of blending.
When a tracer is added to a fluid in a mixing tank, the transient
calculation can be done exclusive of the flow field calculation if
the properties of the tracer and background liquid are identical.
When this is the case, a steady-state calculation can be performed
for the background liquid using either experimental data or the
MRF method, although care should be exercised when using the
latter, as it discussed in Section 5.5.4.  If inflow and outflow ports
are to be used, the simulation of the background liquid alone
should include the inflow boundary conditions for velocity that
will ultimately be used for the tracer.  Once the flow field for the
background fluid is satisfactorily converged, the tracer can be
introduced.  Since the mixture fluid properties will not change
with the addition of the tracer, the transport equations for
momentum, continuity, and turbulence can be disabled while the
transient species calculation takes place.  The transient solution
of this single scalar equation will be robust (since it is not cou-
pled to other variables that are in a state of change) and econom-
ical, advancing rapidly with few iterations required each time
step.  Averages of the tracer concentration, along with standard
deviations, can be computed throughout the vessel to determine
when the tracer has become fully blended. 

There are two exceptions to the use of the method described
above, in which the flow field calculation can be disabled during
the species calculation.  First, if the sliding mesh model is used,
the flow field data is required for each time step, so it is not pos-
sible to disable the flow field calculation to perform the species
transport calculation.  Second, if the tracer is to be added through



an inlet or dip tube for a finite period of time, after which the inlet
flow is disabled, the calculation of the flow field should resume
at that time, especially if the inlet delivers a jet of significant
momentum to the vessel.

6.4.4 Information from LES Simulations
Large eddy simulations are transient simulations designed to cap-
ture the fluctuations that are the result of turbulent eddies.  For
this reason, LES images and animations have the potential to cap-
ture small and large scale activity that would otherwise be aver-
aged to zero with a RANS turbulence model.   Some of the small
scale activity includes the birth and death of eddies or small vor-
tices.  Some of the large scale activity includes low frequency
instabilities in stirred tanks.  A common way to visualize the tur-
bulent structure present in LES simulations of mixers is by ani-
mating vectors or isosurfaces of vorticity magnitude.
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VII
APPLICATION EXAMPLES

To illustrate the successful application of CFD to many types of
process equipment, a number of examples are presented in this
chapter, as listed below. 
Section 7.1: Blending in a Stirred Tank Reactor
Section 7.2: Chemical Reaction in a Stirred Tank
Section 7.3: Solids Suspension Vessel
Section 7.4: Fermenter
Section 7.5: Industrial Paper Pulp Chests
Section 7.6: Ozone Decomposition in a Fluidized Bed
Section 7.7: Bubble Columns
Section 7.8: Twin-Screw Extruders
Section 7.9: Intermeshing Impellers
Section 7.10: Kenics Static Mixer
Section 7.11: HEV Static Mixer
Section 7.12: LDPE Autoclave Reactor
Section 7.13: Impeller Design Optimization
Section 7.14: Helical Ribbon Impeller
Section 7.15: Stirred Tank Modeling Using LES
Unless otherwise noted, these simulations were performed with
software from Fluent Inc.

APPLICATION EXAMPLES
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7.1 Blending in a Stirred Tank Reactor
Mixing time correlations for stirred tank reactors are available,
but these are often difficult to extend outside the experimentally
studied parameter range. One advantage of CFD is that it can be
used to evaluate industrial size equipment or equipment for
which no correlations are available. A comprehensive evaluation
of the accuracy of mixing time predictions using CFD was pre-
sented by Oshinowo et al. (1999). The main conclusion drawn
was that although unsteady tracer dispersion predictions based on
a steady state flow field are acceptable, the accuracy of the pre-
dicted mixing time is greatest when the mixing simulation is
based on a time dependent calculation, using the sliding mesh
model. For the latter method, either the LES model or a standard
turbulence model such as RSM may be used. 

Figure 19 shows an example of the dispersion of a chemical trac-
er in a stirred tank. A standard pitched blade turbine is used to
mix two water-like materials. The neutrally buoyant tracer is
injected at time zero as a blob above the impeller, as shown on
the top left in the figure. The flow field is calculated using the
sliding mesh model, and the dispersion of the tracer is derived
from the flow field. For this particular example, the LES turbu-
lence model is used, although good results have also been
obtained with other turbulence models. The blob is stretched and
the chemical is mixed with the rest of the fluid over time. It is
interesting to see that despite the fact that there are four impeller
blades and four baffles, the concentration field is not symmetric
because of the off-axis injection.  The consequence is that the full
tank needs to be modeled instead of a ninety degree section. 



7.2 Chemical Reaction in a Stirred Tank 
The blending of chemical reactants is a common operation in the
chemical process industries. When a competitive side reaction is
present, the final product distribution is often unknown until the
reactor is built. This is partly because the effects of the position
of the feed stream on the reaction byproducts are difficult to pre-
dict.  In this example from Bakker and Fasano (1993), the prod-
uct distribution for a pair of competing chemical reactions is cal-
culated with CFD and compared with experimental data from the
literature. The model used here is a slightly modified version of
the standard Magnussen model discussed in Section 2.2.1. 

The following competitive-consecutive reaction system was
studied:

(50)

This is the reaction system used by Bourne et al. (1981) and
Middleton et al. (1986). The first reaction is much faster than the
second reaction: K1 = 7300 m3/mole-s vs. K2 = 3.5 m3/mole-s.
The experimental data published by Middleton et al. were used to
determine the Magnussen model constants. Two reactors were
studied, a 30 liter reactor equipped with a D/T=1/2 Rushton tur-
bine and a 600 liter reactor with a D/T=1/3 Rushton turbine.  In
the CFD analysis, a converged flow field was computed first for
each reactor, using experimental data for the impeller boundary
conditions.  The reactants A and B were then introduced to the
tank on an equimolar basis.  The reactant A was assigned a weak,
but uniform concentration throughout the vessel.  The reactant B
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was added in a high concentration in a small region.  The calcu-
lation of the flow field variables was disabled after the addition
of the reactants, and the species calculations alone were per-
formed.  Once the solution converged, the product distribution Xs

was calculated using:

(51)

In the reaction model used here it was assumed that small scale
mixing only affected the first reaction and that once this reaction
had occurred, the species were locally well mixed. As a result,
small scale turbulent mixing did not affect the second reaction.
This was achieved by using different values of the Magnussen
model constants for the two reactions. 

Figure 22 shows a comparison between the experimental data
from Middleton et al. and the CFD predictions for both reactors.
The product distribution, Xs is plotted as a function of impeller
speed, in RPM. This graph shows that the model predicts the
effects of scale and impeller rotational speed correctly, and is
usually within 10% of the experimental results. 
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Figure 22
The product distribution,
Xs as a function of
impeller speed (RPM) 
for two vessels of differ-
ent size, with the second
reactant being added in
the outflow of the
impeller. Model predic-
tions compared with 
the data from Middleton
et al. (1986).



The effect of the inlet position of the feed stream on the forma-
tion of the byproduct, S, was also studied. Figure 23 shows val-
ues of Xs for various feed locations. Xs varies only slightly when
the inlet is located in the fluid bulk. However, when the feed is
injected directly above the impeller, such that the feed stream
immediately passes through the highly turbulent impeller zone,
local mixing is much faster and does not limit the rate of the first
reaction. As a result there is less reaction byproduct, S, and the
final Xs is only 50% of what it would be if the feed were located
away from the impeller. This qualitatively agrees with the exper-
imental results of Tipnis et al. (1993), who used a different set of
reactions and tank geometries but also found that injection near
the impeller resulted in a lower Xs than injection farther away
from it.  The relative differences found by Tipnis et al. are simi-
lar to those shown in this example.

7.3 Solids Suspension Vessel
Stirred tanks for solids suspension applications have traditional-
ly been designed using the just-suspended impeller rotational
speed, NJS. Although much work about solids suspension has
been published, most of it concentrates on providing correlations
for the just-suspended speed. Attempts to develop mathematical
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Figure 23
The product distribution
Xs as a function of feed
location for a 600 liter
vessel with a Rushton 
turbine operating at 
100 RPM.  The product
distribution is reduced 
by about a factor of two
when the feed is posi-
tioned directly above 
the impeller.
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models for the solids suspension process are often based on the
total power draw of the impeller, or the average liquid velocity in
the tank, without taking local effects into account. The effect of
the flow pattern on the spatial distribution of the solids has
received relatively little attention. It is now known that the solids
spatial distribution is strongly affected by the number of
impellers, their location, and certain flow transitions. When
either the D/T or C/T ratios are too large, a flow transition with
reversed flow at the vessel base may occur. This results in an
undesired increase in the power needed to suspend the solids, or
more simply, NJS.  

Adding a second impeller typically has a very small effect on the
just-suspended speed. In multiple impeller systems, zoning
occurs when the impeller separation is too large.  The most effi-
cient solids mixing occurs just before the flow between the
impellers separates. Unfortunately, designing on the basis of the
just-suspended speed or on the basis of power consumption does
not necessarily lead to an optimum multiple impeller system. 

Figure 24 shows a comparison of the solids distribution for a sin-
gle (left) and a dual (right) impeller system in a tall stirred tank,
modeled using experimental data for the impellers, and the
Eulerian granular multiphase model for the solids suspension
(Oshinowo et al., 2000). The results on the left show that in a tall
tank equipped with a single impeller, the solids do not move up
higher than about half the liquid level. When a second impeller is
added, however, such that one long flow loop is formed, the
solids reach the level of the second impeller, as shown on the
right. When the second impeller is placed too far above the first
impeller and zoning occurs, the solids do not reach the upper



impeller (not shown, see Bakker et al., 1994). From the differ-
ences between the solids suspension performance of these two
two-impeller systems it can be concluded that consideration of
the just-suspended speed or power draw alone does not necessar-
ily lead to the best design. The impeller system has to be designed
so that it provides the optimum flow pattern for the suspension
duty to be performed. To design such a system, the effects of the
flow pattern on the solids distribution must be taken into account.
Computer simulation provides an excellent tool for this purpose.

7.4 Fermenter
Large scale fermenters are used to make such products as yeast,
vitamin C, xantham-gum, citric acid, and penicillin, for example.
Fermentations are usually carried out in tall vessels with multiple
impeller systems. Air is sparged in at the bottom, to provide the
micro-organisms in the vessel with a supply of oxygen. It is
important that the mixer disperse the gas into fine bubbles, a con-
dition that is required to ensure good mass transfer from the air
to the broth. 

Figure 25 shows the results of a gas dispersion simulation of a
fermenter.  The fermenter is equipped with a radial flow CD-6
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Figure 24
Solids suspension in a 
tall vessel. The solids 
distribution with a single
impeller is shown on the
left, and with a dual
impeller system is 
shown on the right.
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impeller with concave blades at the bottom, and three down
pumping HE-3 impellers on top. The vessel has no baffles, but is
equipped with twelve sets of eight cooling coils, that also act as
swirl suppressors. Flow field simulations can be performed to
design the impeller system such that there is sufficient liquid
movement around these coils. 

The gas-liquid simulations shown here were performed with soft-
ware developed by Bakker (1992), which contains models for gas
dispersion, bubble coalescence and break-up, and interphase
mass transfer.  The local gas volume fraction is shown on the left.
The local mass transfer coefficient kla (with values multiplied by
3) is shown in the middle, and the local bubble size (with values
multiplied by 30) is shown on the right.  All figures share the

Figure 25
The picture on the left shows the local gas volume fraction, the 
picture in the center shows the local mass transfer coefficient kla, 
and the picture on the right shows the local bubble size. The bubble
size is smallest near the impellers (light) and increases away from 
the impellers due to coalescence. The mass transfer coefficient is
highest near the impellers, because this is where the bubble size is
small (leading to a large interfacial area), and where the turbulence
intensity is high (leading to fast surface renewal around the bubbles).



same scale from 0 to 0.3 (which is why the mass transfer coeffi-
cient and local bubble size distributions are multiplied by a fac-
tor).  The bubble size is smallest near the impellers and increases
away from them, due to coalescence. The mass transfer coeffi-
cient is highest near the impellers, where the bubble size is small-
est (leading to a large interfacial area), and where the turbulence
intensity is highest (leading to fast surface renewal around the
bubbles).  The stair-stepped representation of the curved vessel
bottom was necessary using the software available at the time of
this simulation.  The need for rectangular cells has since become
obsolete with the introduction during the past several years of
boundary-fitted cells and unstructured grids.

7.5 Industrial Paper Pulp Chests 
One example of a difficult mixing problem is found in the paper
industry.  Paper pulp, which is a suspension of thin, flexible
fibers, exhibits a very complex rheology. As a result, multiple
flow regimes are found in paper pulp storage tanks, or chests,
which can be rectangular or cylindrical in shape.  Laminar flow
is common in some parts of the chest, while turbulent flow is
common in others. The bottom of the chest is usually filleted, and
either sloped, curved, or both.  Although paper pulp chests are
sometimes equipped with top entering agitators, the preference in
the paper industry is to use side-entering agitators. 

The rheological properties of fiber suspensions are discussed in a
paper by Gullichsen (1985). The fiber suspension initially
behaves as a non-Newtonian fluid with a yield stress, τy.  Above
τy the paper pulp behavior is non-Newtonian.  When the shear
stress exceeds a second threshold value, τd, the fiber network
structure is disrupted and the suspension behavior is similar to
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that of a turbulent Newtonian fluid. As a result of this rheologi-
cal behavior, fiber suspensions are extremely difficult to agitate.
To provide motion throughout the whole tank, the shear stress has
to exceed the yield stress everywhere in the fluid. Since gradients
in the shear stresses can be expected, there will be regions in the
fluid where the fiber network structure is disrupted and the flow
is turbulent. At the same time the flow may be laminar or even
stagnant in other parts of the chest. This combination of turbulent
flow and laminar flow of a non-Newtonian fluid makes paper
pulp storage chests difficult to model with CFD. 

In an effort to address this problem, Bakker and Fasano (1993)
developed a model for the flow of paper pulp.  To model the com-
plex fiber suspension, the following method was used. For every
computational cell, the computations are first performed as if the
flow were turbulent. A check is then done to see if the total shear
stress is indeed larger than τd. If this condition is not met, the cal-
culations for that particular cell are repeated as if the flow were
laminar. The local apparent viscosity is then calculated from the
experimental shear stress vs. shear rate curves and the local shear
rate. The model has since been successfully used to predict the
flow patterns in large industrial chests where zones with turbulent
mixing, laminar mixing, and stagnant regions can easily be located. 

Figure 26 shows the flow pattern in one example of a stock chest
for mixing and storage of paper pulp.  The agitator is modeled
using experimental data.  The flow pattern with a solution of 1%
pulp is shown on the left. The figure on the right shows how the
flow pattern changes when the concentration is increased to 5%
and the same impeller speed is used.  The results show that more
power must be applied to maintain adequate flow conditions



when the pulp concentration is increased. The model is an excel-
lent tool for the optimization of agitators for large industrial stor-
age chests, and has been successfully used over the years for
many different paper pulp applications. 

7.6 Ozone Decomposition in a Fluidized Bed
Fluidized beds are used in the chemical industry for catalytic
reactions. Bed conversion refers to the process by which the pas-
sage of one material through the bed is converted to another dur-
ing transit.  Design of the system for optimum conversion strong-
ly depends on knowledge of both hydrodynamics and chemical
reactions.  In this example, the Eulerian granular multiphase
(EGM) model is used to capture the hydrodynamics, and a spe-
cial reaction model is used to predict the decomposition of ozone
as it passes through a cylindrical fluidized bed.  The vessel is 0.23
meters in diameter and 0.25 meters high, and is simulated using
an axisymmetric grid of about 8000 computational cells.  At rest,
the bed is 0.12 meters high, and contains catalyst particles (sand
impregnated with iron oxide) 117 microns in diameter.  Two gas
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Figure 26
This figure shows the flow pattern in a stock chest for mixing and 
storage of paper pulp. The image on the left shows the flow pattern
with a solution of 1% pulp. The image on the right shows how the
flow pattern changes when the concentration is increased to 5%.

1% pulp 5% pulp
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phase species are used in the model, ozone and oxygen.  Ozone
gas enters from inlets at the bottom of the bed.  The gas lifts and
separates the particles in the bed, allowing for better interaction
between the ozone and particle surfaces.  The iron oxide causes
the ozone molecule, O3, to give up an oxygen atom and leave
behind an oxygen molecule, O2.  A mixture of ozone and oxygen
exits through the upper surface of the column.

The decomposition reaction is first order for the two gas species:

O3 1.5 O2

The decomposition rate is expressed as

K = 1.57 a [O3],

where a is the volume fraction of the catalyst and [O3] is the con-
centration of ozone. A user-defined subroutine is used to calcu-
late the reaction rate and ensure that the reaction takes place in
the bed region only. The calculations are done for inlet gas veloc-
ities in the range from 4 to 14 cm/s.  

Figure 27 shows the gas volume fraction one second after the
flow is initiated.  The flow field is the same whether the reaction
in the gas phase is taking place or not. The bubbles are formed
near the bottom of the bed and migrate upwards, lifting the sur-
face before breaking through it. The bubble shape and size are
grid dependent.  On coarser meshes, the bubbles are fewer in
number and rounder. On finer meshes, the bubbles are denser and
more irregular. The number of bubbles has a significant impact
on the conversion. The more bubbles in the domain, the higher



the conversion.  While some large bubbles stand out, the bed
itself is filled with small bubbles to a greater or lesser degree.  A
bed filled with bubbles in this manner is the desired hydrody-
namic state for optimum conversion.

In Figure 28, the conversion curve (top) and gas holdup (bottom)
as functions of the gas velocity are plotted.  The gas holdup is
defined as the ratio of the gas in the bed to the total volume of the
bed.  The curve shows that the gas holdup increases with gas
velocity up to a point, after which saturation occurs.  This is
because at the low end, the increasing gas velocity forces the bed
to lift more.  When saturation occurs, the bed can no longer rise
and hold additional gas.  The conversion curve is a plot of Cout/Cin

for ozone.  It is plotted along with data from Fryer et al. (1976),
and good agreement is in evidence.  The results follow the trends
in the gas holdup.  At low gas speeds, the residence time is long,
allowing more time for the ozone to come into contact with the
particles.  Conversion is high, so Cout/Cin is small.  At high
speeds, the residence time reduces, and conversion is poorer,
tending toward a constant value.
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Figure 27
The fluidized bed after one
second of operation.
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7.7 Bubble Columns
Bubble columns are contactors in which a discontinuous gas
phase in the form of bubbles moves relative to the continuous liq-
uid phase. As reactors, they are used in a variety of chemical
processes, such as Fischer-Tropsch synthesis, manufacture of
fine chemicals, oxidation reactions, alkylation reactions, effluent
treatment, coal liquefaction, fermentation reactions, cell cultures,
and the production of single cell proteins. The principal advan-
tages of bubble columns are the absence of moving parts, leading
to easier maintenance, high interfacial areas and transport rates
between the gas and liquid phases, good heat transfer character-
istics, and large liquid holdup, which is favorable for slow liquid
phase reactions. The complex processes in bubble column reac-
tors affect the reactor operation and performance. In industrial
operation, the turbulent two-phase flow determines the transient
and time-averaged values of gas holdup distribution, the extent of

Figure 28
Gas holdup (lower curve) and (1-conversion) (upper curve) as func-
tions of superficial velocity. Experimental values for (1-conversion)
are also shown.



liquid phase backmixing, the gas-liquid interfacial area, the gas-
liquid mass and heat transfer coefficients, the bubble-size distri-
butions, the bubble coalescence and redispersion rates, and the
bubble rise velocities. The lack of complete understanding of the
fluid dynamics makes it difficult to improve the performance of
a bubble column reactor simply by judicious selection and con-
trol of the operating parameters. 

CFD is now being used to better understand the interaction of
these and other variables. Both bubbly and churn-turbulent bub-
ble column flow regimes can be simulated (Sanyal et al., 1999).
Figure 29 shows the results of a time dependent simulation of the
velocity field and gas holdup profile in a 3D simulation of a
cylindrical bubble column.  The image in the center shows a sur-
face at which the volume fraction of gas is 30%. Inside the sur-
face, the volume fraction of gas is higher. The plot on the left
shows the velocity vectors on this surface. The plot on the right
shows the liquid velocity vectors in a plane through the center of
the column.

CFD results for bubble column flow have been validated against
experimental data in a number of studies.  See Vasquez et al.
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Figure 29
Simulation of the time 
dependent velocity field 
and gas holdup profile in a 
bubble column. The plot in the 
center shows a surface at which 
the volume fraction of gas is 30%.
Inside the surface, the volume fraction
of gas is higher.  The plot on the left
shows the velocity vectors on this sur-
face.  The plot on the right shows the
liquid velocity vectors in a plane
through the center of the column. 
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(2000), for example. Good agreement is obtained when the
results are compared with experimental data obtained via the
non-invasive, computer automated radioactive particle tracking
experimental technique, described in this paper.

Simulations such as these can be used to predict gas holdup, mass
transfer rates, mixing rates, and process performance of bubble
columns. One of the advantages of CFD over the use of tradi-
tional bubble column design correlations is that the CFD models
also apply to situations outside the range for which experimental
data was obtained. 

7.8 Twin-Screw Extruders
The twin-screw extruder is one of the most widely used tools, not
only in the plastics and rubber industry but also in other areas
such as food processing.  Single- and twin-screw extruders are
used to melt, convey, compress, and mix the different compounds
involved in any given process, and these steps can considerably
affect the quality of the final product. This explains the large
interest in screw analysis and, more specifically, the numerous
attempts to model twin-screw extruders through numerical simu-
lations.  The challenges involved in such simulations (moving
parts, thermal behavior, difficult meshing and remeshing tasks,
and partial filling, for example) often lead to many simplifica-
tions of the actual problem.

In order to ease the set up of a three-dimensional unsteady twin-
screw extruder, a technique referred to as mesh superposition, or
MST, has been developed (Avalosse and Rubin, 1999). This
robust technique greatly simplifies the meshing of the geometric
entities and does not present the complexities and limitations of
other commonly used techniques.  The transient algorithm was



developed for two-dimensional and three-dimensional non-
isothermal, generalized Newtonian fluids.  It is designed to work
with a finite element solver.  A mesh is generated for each part of
the flow simulation: one for the flow domain and one for each
screw. The screws are assumed to be rigid and their motion is a
combination of translation and rotation. At each timestep the
screw meshes are moved to a new position, overlapping the flow
mesh. For each node of this new domain that lies within a given
screw, a special formulation is used that imposes a velocity that
matches the rotation speed of the screw.  The movement of the
screws imparts momentum to the surrounding fluid.  The flow is
calculated in this manner for a set of successive screw positions
at constant angular displacement. The history of the flow pattern
is thus obtained and stored for further analysis.

Figure 30.1 shows the grid for a typical twin-screw extruder.  The
grid in the screw regions is shown on the surfaces of the elements. 
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Figure 30
The mesh superposition technique was used to model the complex, time-
dependent flow in a twin-screw extruder. The flow of polystyrene was analyzed
throughout a combination of conveying and kneading block elements.  The sur-
face grid for the screws is shown in Figure 30.1.  The figure on the right (30.2)
shows the local shear rate on a planar slice through the twin-screw extruder,
with white denoting regions of high shear rate and black denoting regions of
low shear rate.  Three meshes were used for this configuration, one for each
screw and one for the flow domain. 

30.1

30.2
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The black lines show the outline of the region containing the
fluid.  Figure 30.2 shows the shear rate on a planar surface
through the extruder. High shear rates are found near the tips of
the extruder elements, as expected. This information is relevant
when dealing with shear sensitive materials. 

Other quantities of interest, such as residence time distributions,
material thermal history, and stretching rates, for example, can
also be obtained. This allows for a detailed comparison between
alternative designs. For example, using this technique it was
found that an extruder in which conveying elements were alter-
nated with kneading elements provided 25% better mixing per
unit length than a standard extruder that contained only convey-
ing elements. The residence time distribution was narrower, how-
ever, with the standard design. Being able to obtain such detailed
performance information without experimentation allows process
engineers to design advanced and more efficient process equip-
ment with confidence.

7.9 Intermeshing Impellers
The mesh superposition technique (MST) can also be used to
model the flow in vessels equipped with multiple impellers
whose swept volumes overlap.  In this example, the mixing in
such a system operating at a very low Reynolds number (1 x 10-4)
is considered.  Figure 31 shows two anchor impellers mounted on
separate shafts. The impellers are set at a 90° angle relative to
each other. Although the impellers do not touch each other, there
is a volume that is swept by both impellers. Such a system can-
not be modeled using the sliding mesh models implemented in
most commercial CFD programs. The main benefits of using the
mesh superposition technique for such as system are that each



part can be meshed separately, and that these intermeshing parts
can rotate freely without having to be remeshed. 

To create the mixer geometry, a cylindrical mesh is generated for
the tank.  Two other, completely independent meshes are defined
for the blades. The three meshes are then combined into one.  As
the blades rotate, the transient flow pattern in the tank can be cal-
culated, and illustrated by the dispersion of tracer particles, as
shown in the figure.  As the total number of rotations increases,
the tracer becomes more uniformly distributed.  After six rota-
tions, the dispersion of the tracer particles in the horizontal plane
is satisfactory.  Note, however, that the particles have moved lit-
tle in the vertical direction.  This is because the anchor impellers
in use impart little or no axial momentum to the fluid.  Twisted
blades, which also impose and axial motion on the flow, might
perform better to distribute the tracer throughout the vessel. The
mesh superposition technique is well suited to study such systems.

7.10 Kenics Static Mixer
Static mixers are widely used in the process industries.  Static
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Figure 31
The dispersion of a particle tracer in a vessel equipped with two intermeshing
anchor impellers as calculated using the mesh superposition technique.  After
six full rotations, the particles are well dispersed on the horizontal plane where
they were released.

t = 0 1-3/4 rotations 2-1/8 rotations 6 rotations
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mixers consist of motionless elements mounted in a pipe, which
create flow patterns that cause fluids to mix as they are pumped
through the pipeline. Most of the experimental work on static
mixers has concentrated on establishing design guidelines and
pressure drop correlations. The number of investigations into the
flow and mixing mechanisms is limited, probably due to difficulties
encountered in obtaining meaningful experimental measurements. 

The Kenics in-line mixer consists of a number of elements of
alternating right- and left-hand 180-degree helices.  The elements
are positioned such that the leading edge of each element is per-
pendicular to the trailing edge of the previous element. The
length of the elements is typically one and a half tube diameters.
This type of static mixer is used for mixing under laminar flow
conditions, such as the mixing of polymers or food products, like
peanut butter and chocolate.

To evaluate the mixing mechanism of the Kenics mixer, Bakker
and Marshall (1992) and Bakker and LaRoche (1993) calculated
the transport of two chemical species through a six-element
device. The center of the inlet was 100% of one species, desig-
nated by white in Figure 32. The outside of the inlet was 100%
of the other species, shown as black. The results are presented as
a series of contour plots, showing the concentration fields of the
chemical species at various axial positions along the tubes. The
concentration fields after 18, 54, 90, 126, and 162 degrees of
rotation in each of the six Kenics mixing elements are shown. In
the first element, the white core coming from the inlet is split into
two white islands. These islands are stretched and move outward.
The black, which was initially on the outside, is split into two
semi-circular filaments, which move towards the inside. Similar
stretching and folding processes occur in the next several elements.



At the inlet of the third element the black species is now on the
inside, meaning that the concentration field has basically flipped
inside out. This process of splitting, stretching, folding and flip-
ping inside out repeats itself every two elements, until the fluids
are mixed. The number of elements can be adjusted to the
requirements of the process, but typically varies between six and
eighteen depending on the Reynolds number.
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Figure 32
Concentration profiles in the mixer. Rows one to six show the concentration
in elements one to six respectively. Columns one to five show the concen-
tration profiles at 18°, 54°, 90°, 126°, and 162°, respectively.
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7.11 HEV Static Mixer
The traditional helical mixing element is mainly used for in-line
blending under laminar and transitional flow conditions. The
High Efficiency Vortex (Chemineer HEV) mixer is used for tur-
bulent blending of gases or miscible liquids. It consists of a series
of tab arrays, which are placed along a length of pipe.  The
advantages of this design are that it is easily adapted to both
cylindrical and square pipe cross-sections, and that it has a rela-
tively low pressure drop. HEV mixers have been in use in the
process industries for several years now, both for liquid-liquid
and gas-gas mixing. Applications include waste-water treatment,
burners, exhaust stacks, beverage manufacturing, and many oth-
ers. The wide range of applications and scales in which the HEV
mixer is used requires a technique to analyze custom applications
on demand. Gretta (1990) investigated the flow pattern generat-
ed by the tabs using a combination of hot wire anemometry,
hydrogen bubble visualization and dye visualization, and found
that the tabs not only generate a pair of counter-rotating, longitu-
dinal vortices but also shed so-called hairpin vortices. The small-
er hairpin vortices, generated in a transient manner, move down-
stream with the larger longitudinal vortices.  

Bakker et al. (1994) modeled the flow pattern generated by an
HEV mixer using the Reynolds stress model for turbulence. This
steady-state model correctly predicted the formation of the longi-
tudinal vortices, but the hairpin vortices only showed up in the
results as regions of high turbulence intensity at the edges of the
tabs. Due to the steady-state nature of that model and the assump-
tion of eight-fold symmetry made for the purpose of the calcula-
tion, the mixing of fluids near the center of the pipe was under-
predicted compared to what was known from operational experi-
ence and laboratory studies. 



Because of the shortcomings of the RANS turbulence models in
predicting the hairpin vortices, the HEV mixer was selected as a
good candidate for the LES turbulence model. In the LES model,
no symmetry assumptions were made, meaning that the full 360°

pipe was modeled. The advantage of modeling the full pipe is
that periodic interactions between the vortices that form behind
the different tabs are not restrained. The simulation was started
with a steady-state calculation based on the k-ε turbulence model.
After partial convergence, the LES model was enabled.  As
expected, the transient results showed the periodic shedding of
hairpin vortices off the back sides of the tabs. Figure 33 shows
these vortices at two different instances in time. It is clear that the
hairpin vortex forming around the tab on the left has shifted
downstream during the 0.06 s that separates the two flow pattern
snapshots. This shows that the LES model is well suited to cap-
ture complex, time dependent vortex systems such as these.
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Figure 33
This image shows the hairpin vortex (in cross-section) that forms
behind the tab in an HEV mixer at two different instances in time.
Vortices such as these are shed in a time dependent fashion. The
LES model was used for this simulation.  A similar HEV mixer,
solved using the steady-state Reynolds stress turbulence model,
failed to capture this flow detail.
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7.12 LDPE Autoclave Reactor
Low density polyethylene (LDPE) reactors are used to manufac-
ture polymer products.  The reactors are typically of the tubular
or autoclave variety.  To make the (multi-molecule chain) poly-
mer, a minute amount of initiator is added to a (single-molecule)
monomer.  Several reaction steps take place in which the
monomer is transformed to intermediate polymers, or radicals,
and finally to a polymer product with a range of chain lengths
(corresponding to a range of molecular weights).  Heat is released
in many of the reactions, and one goal of LDPE reactor design is
to prevent hot spots that give rise to a condition called thermal
runaway, which is characterized by an undesired product distribution.

In this example, the nearly infinite set of reactions in the chain is
approximated by six finite-rate reactions using the method of
moments (Kiparissides et al. (1997) ). These reactions are solved
using the finite rate reaction model with the help of user-defined
functions.  As a consequence of the method of moments, quanti-
ties that describe the product distribution can also be computed.
These include the molecular weight distribution, which, if nar-
row, indicates a high quality (uniform) product.

A hybrid mesh of 166,000 cells, shown in Figure 34, is used for
the simulation.  The reactor contains both paddle and twisted
blade impellers, whose rotation is modeled using a sliding mesh.
The monomer and initiator used are ethylene and DTBP, respec-
tively.  The initiator is pre-mixed with the monomer and injected
into the reactor through an annular ring at one end of the vessel.
The mixture leaves the device through an annular exit at the
opposite end.  The flow field is characterized by high swirl,
which is induced by the rapidly rotating impellers in the unbaf-



fled vessel.  The RNG k-ε model is used to account for turbulence
in the highly swirling flow.

Four axial slices are used in the next two figures to show the pro-
gression of two problem variables as the mixture advances
through the reactor.  In these figures, the inlet annulus is at the top
of the figure and the outflow annulus is at the bottom.  In Figure
35 the conversion of the monomer (to both radicals and product
polymers) is shown to gradually increase to about 7% as the flow
passes through the vessel, in reasonably good agreement with
published data (Read et al. (1997)).  Contours of the molecular
weight distribution (Figure 36) vary from 41,500 to 41,900, or by
about 1%.  As the mixture moves through the reactor, the spread
in the distribution narrows, indicating a product of high quality.
The solution also indicates that the molecular viscosity increases
as the chains of radicals grow, consistent with expectations.
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Figure 34
The surface mesh used 
for the reactor.



COMPUTATIONAL FLUID MIXING

122

7.13 Impeller Design Optimization
Ever since the 1950s the Rushton turbine has been the standard
impeller for gas dispersion applications. It features six flat blades
mounted on a disk. As shown in Figure 20.2, the flow behind the
impeller blades separates, and trailing vortices form. On gassing,
gas accumulates in the low-pressure regions behind the blades
and cavities form. This leads to a significant drop in power draw

Figure 35
The conversion of monomer
increases to about 7% as the
material moves through the 
reactor. The flow is from top 
to bottom. The darker color 
of the bottom indicates a 
higher conversion rate.

Figure 36
Contours of molecular weight
distribution are used to assess
the range of molecular weights
in the product. The range is 
narrower near the exit at the 
bottom of the reactor than near
the inlet at the top.



and loss of gas dispersion ability. During the late 1980s and early
1990s, modified Rushton turbines with semi-circular blades
became standard.  These models reduce flow separation and cavity
formation behind the blades, but do not eliminate them completely. 

To date, the disk-style gas dispersion impellers studied in the lit-
erature have blades that are symmetric with respect to the plane
of the disk. This is not necessarily optimal, since the gas usually
enters from the bottom, causing a distinctly asymmetric flow pat-
tern. In this example, the operation of the Chemineer BT-6 gas
dispersion impeller is reviewed [Bakker (1998) and Myers et al.
(1999)]. The BT-6 impeller, with vertically asymmetric blades, is
designed to accommodate the different flow conditions above
and below the impeller disk. 

The turbulent flow pattern created by the BT-6 was modeled
using a fully unstructured tetrahedral mesh with approximately
500,000 cells. The MRF approach and RNG k-ε turbulence
model were used. Second order upwind differencing was used for
the momentum and turbulence equations. The flow pattern was
converged using the SIMPLEC pressure-velocity coupling
method, which allows for the use of high underrelaxation factors,
resulting in fast convergence. 

The triangular mesh on the impeller blade is shown in Figure 37.
The blades have a concave shape, which consists of three curves
of different radii and length. The top part of the blade is longer
than the bottom part. The backside of the blade is rounded. 

After the flow field was converged, the torque on the impeller
was calculated by integrating the pressure on the impeller blade
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surfaces. From the torque, the impeller power number, based on
the nominal diameter at the impeller disk level, was calculated to
be 2.3, which is in excellent agreement with experiments. 

Figure 38 shows the velocity field around the impeller blades.
The velocity vectors are drawn in the frame of reference of the
impeller. It is clear that no flow separation behind the impeller
blades occurs. This means that cavity formation under gassed
conditions will be reduced.  Indeed, visualization studies have
shown that gas is captured under the top overhang and dispersed
from a deep vortex on the inside of the blade. No large gas-filled
cavities have been observed behind the blade. As a result, the BT-6

Figure 37
The triangular surface
mesh on a BT-6
impeller.

Figure 38
Velocity field around
the blades of a BT-6
impeller. No flow 
separation occurs
behind the blades.



has a gassed power curve that is flatter than that of other
impellers. It can disperse more gas before flooding than the
impellers with symmetric semi-circular blades, and is less affect-
ed by changes in liquid viscosity.

7.14 Helical Ribbon Impeller
High-viscosity mixing applications occur in most chemical
process industry plants. For instance, the polymer industries must
blend high-viscosity reaction masses to thermal and chemical
uniformity. This industry must also blend small amounts of low-
viscosity antioxidants and colorants into polymer streams. The
personal-care products industry encounters many high-viscosity
mixing applications in the preparation of creams, lotions, pastes
and drugs. Other high-viscosity applications occur in the produc-
tion of food, paint, drilling mud, and greases, to name a few.
Viscosities can be in the range from about one Pa-s all the way
up to 25,000 Pa-s in some extreme cases. The quality of the final
mixed product in these applications can be very important eco-
nomically. 

Low-viscosity mixing applications can usually be handled effi-
ciently with impeller systems consisting of one or more turbines.
To obtain adequate mixing under the laminar flow conditions
encountered in high viscosity applications, on the other hand,
close-clearance impellers such as anchors and helical ribbons are
required. These impellers sweep the whole wall surface of the
vessel, and agitate most of the fluid batch through physical con-
tact. Helical ribbon impellers are typically used for industrial
applications where the viscosity is in the range of 20 to 25,000
Pa-s. Wall scrapers can be mounted on the impeller blades to
improve heat transfer. 
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Figure 39 shows the flow pattern in the vertical plane of a vessel
equipped with a helical ribbon. A fully structured hexahedral
mesh with approximately 100,000 cells was used. The structured
3-D mesh was created by extruding and twisting a 2-D planar
mesh. The fluid is viscous and the impeller Reynolds number is
approximately 10. The velocity vectors show that the impeller
pumps down at the wall and up in the center. Contours of veloc-
ity magnitude on the tank bottom show that there are low veloc-
ities in the center and higher velocities near the outside wall.
Small circulation loops form between the impeller blades and the
vessel wall, as discussed in the general literature. These indicate
the need for an even larger D/T or the use of wall scrapers if
optimum heat transfer is to be obtained.

Figure 39
The flowfield in a
vessel equipped 
with a helical ribbon
impeller. Velocity 
vectors in a vertical
plane are shown. The
bottom of the vessel is
colored by velocity
magnitude.



7.15 Stirred Tank Modeling Using LES 
In turbulent flows, large-scale eddies with coherent structures are
primarily responsible for the mixing of passive scalars. The
large-scale eddies embody themselves in the form of identifiable
and organized distributions of vorticity. In addition, the mixing
process involves all mechanisms typically found in vortex
dynamics, such as stretching, break-up, concatenation, and self-
induction of vortices.

Recent experimental work suggests that large-scale, time-
dependent structures, with periods much longer than the time of
an impeller revolution, are involved in many of the fundamental
hydrodynamic processes in stirred vessels. For example, local
velocity data histograms may be bi-modal or tri-modal, even
though they are being analyzed as having only one mode in most
Laser-Doppler experiments. In solids suspension processes,
solids can be swept from one side of the vessel to the other in an
oscillating pattern, even in dilute suspensions. Digital particle
image velocimetry experiments have shown that large-scale
asymmetries with periods of up to several minutes exist in stirred
vessels equipped with axial flow impellers.

The advantage of Large Eddy Simulation (LES) over other tur-
bulence models is that it explicitly resolves the large eddies,
which are responsible for much of the mass, energy, and momen-
tum transport. Only the small eddies are represented by a time-
averaged sub-grid scale model.  In mixing tank simulations, the
LES turbulence model is typically combined with a sliding mesh
model for the impeller so that the most rigorous time-accurate
solution can be obtained. 
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One parameter that is pivotal to the success of an LES simulation
is the density of the grid throughout the domain. To determine an
optimum grid size, the following, straightforward method is rec-
ommended. First a steady-state, three-dimensional calculation is
performed that uses the standard k-ε turbulence model and the
MRF model for the impeller. From the converged flow field, vol-
ume averages for the following three turbulent length scales are
calculated:

· Integral length scale: Lt =  k3/2/ε
· Taylor length scale: La =  (15νu’2/ε)0.5

· Kolmogorov scale: Lk =  (ν3/ε)1/4

The integral length scale is a measure of the large-scale turbu-
lence. The Kolmogorov length scale is a measure of the smallest
scale eddies at which dissipation occurs. The Taylor length scale
is an intermediate length scale that can be used as a guide to
determine the grid size required for an LES simulation. For a typ-
ical turbulent small-scale vessel, Lt/T ~ 10-1, La/T ~ 10-2, and Lk/T
~ 10-3. Based on the Taylor length scale, a suitable grid size for
an LES simulation would be on the order of 10-2 T, which would
result in a grid on the order of 106 cells.  The large number of
cells along with the transient solution method (one that requires
a small time-step), contribute to the increased calculation time
required by the LES model when compared to RANS models.
Figure 40 shows how the CPU time and required grid size for the
LES model compare with other turbulence modeling options.

In this example, the use of LES and the sliding mesh model to
predict large-scale chaotic structures in stirred tanks is demon-
strated for a single high-efficiency impeller. A full hexahedral
mesh was used for the simulation. The vessel diameter is 0.29 m, 



and the impeller rotates at 60 RPM, resulting in a Reynolds num-
ber of 13,000.  The central differencing scheme for the momen-
tum equations was used along with a time step of 0.01 s. The
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Impeller-baffle interaction. 
Time dependence.

Industrial research. Large scale 
turbulence and unsteady structures.

Advanced, fundamental fluid 
dynamics research.

Impeller design. When 
velocity data is not available.

Daily design. General flow 
fields. How many impellers 
are needed. Instructional.

Figure 40
The CPU time and grid size requirements for various impeller modeling options.

Figure 41
The flow pattern at the
surface of a vessel
equipped with a high-
efficiency impeller as
calculated using the
LES turbulence model.
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RNG modification of the Smagorinsky model was used for the
sub-grid scale turbulence. A period of approximately 40 seconds
was simulated. The results show that the flow pattern indeed
exhibits large-scale unsteady motion, similar to what has been
reported from experimental data in the literature. Figure 41
shows the flow field at the liquid surface at one instant in time,
using oilflow lines, which are pathlines that are confined to the
surface from which the flow followers are released. The turbulent
structure of the flow is clearly visible.

When performing such LES calculations, it is advised to visual-
ize the results by creating flow field images after every time step.
These can then be used to create animations. Similarly, statistical
data can be obtained by creating monitor points or lines in the
domain and saving important variables in these locations. The
time series that are obtained in this manner can be further ana-
lyzed using standard statistical and signal analysis techniques.



VIII
CLOSING REMARKS

It could be said that what comes out of a CFD simulation is only
as good as what goes in.  While this is true in part, there are many
other considerations that can lead to the success - or lack thereof
- of CFD.   One is based on the choice of software.  Many com-
mercial packages are available today, and resources to help find
and evaluate them are given in Section 8.1.  Comments on basic
hardware requirements for CFD codes, which are computational-
ly intensive, are found in Section 8.2.  Issues regarding the learn-
ing curve, or the time required for an engineer to “come up to
speed” and be successful with CFD, are discussed in Section 8.3.
Once the proper software, proper hardware, and trained user are
in place, there are still some common pitfalls to be avoided.
These, along with some of the benefits of CFD, are discussed in
Section 8.4.  

8.1 Additional Resources
Many commercial, and even some freeware or shareware CFD
codes are available, each with different capabilities, special phys-
ical models, numerical methods, geometric flexibility, and user
interfaces. Specialized pre- and post-processing programs are
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also available for the generation of the geometry and grid, input
of model parameters, and viewing of results. Excellent overviews
of these products can be found on the web. See, for example,
CFD Review (Wyman). The increased use of CFD in the chemi-
cal industries has led to the formation of a dedicated chemical
process CFD user group (LaRoche), which provides another
excellent resource for the mixing analyst. 

8.2 Hardware Needs
In the past, CFD usage was often associated with the realm of
high-powered computer systems. But much of today's modeling
work can be accomplished on low-end Unix workstations, or
high end PCs. A typical PC configuration might be a one or two-
processor system, running Windows or Linux. Unix workstations
with one, two, or more processors are also commonly used.
These systems are more than adequate for moderately-sized,
steady state or time-dependent analyses. For complicated models,
or those using a large number of computational cells (> 1 million),
multi-processor workstations are often used. Although super-
computers are still employed for high-end research and develop-
ment work, they are not commonly needed for typical engineer-
ing design applications. Another recent trend involves the clus-
tering of multiple inexpensive PCs into a parallel-, or cluster-
computing network. Such systems provide supercomputing
power at a fraction of the cost.

8.3 The Learning Curve
The user-friendliness of CFD software has also increased signif-
icantly during recent years. In the past, CFD software was char-
acterized by text- or command-file based interfaces and difficult
to configure solvers, that made fluid flow analysis the exclusive



domain of highly trained experts. However, the latest generation
of commercial CFD software has been developed with graphical
user interfaces. They have much more stable and robust solvers,
and allow easy geometry exchange between CAD programs and
the CFD solver. This has allowed engineers who are not experts
in fluid dynamics to make efficient use of CFD and use this tech-
nology on a day-to-day basis in their design and optimization
work. Most commercial CFD companies provide training and
ongoing technical support with a software license. The average
engineer typically requires one week of training to get started
using one of these modern CFD packages.

8.4 Common Pitfalls and Benefits
Despite the increased user-friendliness of modern CFD software,
there are still a number of potential pitfalls that can beset the ana-
lyst.  Some of the most commonly made mistakes when using
CFD are listed below. 

· Use of a low quality, coarse grid
Details that are smaller than the cell size cannot be resolved.
Often, small flow features in one region need to be resolved
in great detail in order to accurately predict large flow 
features in other regions.  For example, a jet penetrating into
a vessel will appear to diffuse more rapidly than in actual fact
if a coarse grid is used in the jet region.  Satisfying grid needs
such as this may lead to a finer grid containing far more cells
than was initially estimated.

· Use of unconverged results
CFD solvers are iterative and it is often tempting to cut a 
calculation short when deadlines are approaching or the 
coffee break is over. However, the analyst should always 
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ensure that proper convergence has been obtained before 
using the results from any CFD solver.

· Use of the wrong physical property data
This is not as trivial as it sounds. For example, viscosity 
curves may have been determined in one temperature and 
shear rate range, but if the actual shear rates or temperatures
in the flow domain are outside of this range the curves may 
no longer be valid and incorrect results may be obtained.  As
another example, accurate average particle size and density is
needed to best predict solids suspension behavior.

Fortunately, none of these problems is fundamental to the CFD
technology itself. A coarse grid may be refined, unconverged cal-
culations continued, and accurate physical constants may be
measured. These easily avoided pitfalls are far outweighed by the
following benefits:

CFD can be used to augment design correlations and 
experimental data.
CFD provides comprehensive data that is not easily 
obtainable from experimental tests.
CFD reduces scale-up problems, because the models are 
based on fundamental physics and are scale independent.  
Models of the actual unit can be simulated just as easily as 
models of lab scale versions, so predictions, and indeed 
optimization of the actual unit can be achieved.
When evaluating plant problems, CFD can often be used to 
help understand the root cause of a problem, not just the 
effect.
CFD can be used to complement physical modeling. Some 
design engineers actually use CFD to analyze new systems 



before deciding which and how many validation tests need to
be performed. 
Many “what if” scenarios can often be analyzed in less time
than experimental tests would take.

In summary, if the CFD analyst is careful when addressing the
issues of problem setup and solution convergence, the potential
benefits that can be extracted from the simulation are numerous.
Furthermore, the computational resources available today, both
in terms of speed and power, should encourage engineers to make
use of high density grids and complex models so as to achieve
results of the best possible quality.
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NOTATION

A Magnussen mixing rate constant (-)
Ak Arrhenius constant for reaction k (variable units)
B Magnussen mixing rate constant (-)
C Off-bottom clearance (m)
C1 Turbulence model constant (-)
C2 Turbulence model constant (-)
CA Concentration of species A (mole m-3)
cA Fluctuation in the concentration of species A (mole m-3)
Cj' Concentration of species j' (mole m-3) 
D Impeller diameter (m)
E Total enthalpy (J)
Ek Activation energy for reaction k (J mole-1)
f Underrelaxation factor (-)
F(φ) Spatially discretized transport equation
Fi Net force in the i direction (N)
g Gravitational acceleration (m s-2)
Gk Generation term for turbulence (kg m-1 s-3)
Ji',i Diffusion flux of species i' in direction I (kg m-2 s-1)
h Static enthalpy (J)
hj' Enthalpy for the species j' (J)
k Turbulent kinetic energy (m2 s-2) 
keff Effective conductivity (W m-1 K-1)
Ki',k Reaction rate of species i' in reaction k (variable units) 
L Length of domain in definite integral over coordinate x (m)
La Taylor length scale (m)
Lk Kolmogorov scale (m)
Lt Integral length scale (m)
mi' Mass fraction of species i' (-) 
Mi' Molecular weight of species i' (kg/kgmole)

NOTATION
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N Impeller rotational speed (s-1) 
NP Power number (-)
NQ Flow number (-)
P Power drawn by an impeller (W)
p Pressure (Pa)
Pe Peclet number (-)
Ql Liquid flow rate (m3 s-1)
r Spatial coordinate in the radial direction (m)
R Universal gas constant (J mole-1 K-1)
R Impeller radius (m)
Re Reynolds number (-)
Ri' Generalized source term for reactions in the species i' transport 

equation (kg m-3 s-1)
RK_i',k Kinetic reaction rate for species i' in reaction k (kg m-3 s-1) 
RM1-i',k Mixing limited reaction rate for the reactant species i' in reaction 

k (kg m-3 s-1) 
RM2-i',k Mixing limited reaction rate for the product species i' in reaction 

k (kg m-3 s-1) 
RP Residual at the point P
Sh Generalized source term for the enthalpy equation (W m-3)
Si' Net species source term in the species i' transport equation 

(kg m-3 s-1)
t Time (s) 
T Tank diameter (m)
T Temperature (K)
Tref Reference temperature for formation enthalpy (K)
U Velocity vector (m s-1) 
Ui Velocity in the direction i (m s-1) 
ui' Fluctuating velocity component (due to turbulence) in the 

direction i (m s-1) 
Utip Impeller tip speed (m s-1)
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Wb Width of impeller blade (m)
xi Spatial coordinate in direction i (m) 
Xs Product distribution (-) 
z Impeller blade height (m)

Greek Symbols
α Volume fraction of catalyst (-)
βk Temperature exponent in Arrhenius rate expression (-)
Γ Generalized diffusion coefficient (variable units)
δij Kronecker delta (-)
ε Turbulent kinetic energy dissipation rate (m2 s-3) 
ηj',k Exponent for concentration of species j' in reaction k (-)
φ Generalized conserved quantity (variable units)
µ Molecular viscosity (kg m-1 s-1) 
µeff Effective viscosity (kg m-1 s-1)
µt Turbulent viscosity (kg m-1 s-1) 
νi' Stoichiometry of species i' (-)
Ω Angular speed (rad/sec)
ρ Liquid density (kg m-3) 
σk Turbulence model constant (-)
σε Turbulence model constant (-)
σµ Turbulence model constant (-)
τ Shear stress (Pa) 
τd Disruptive shear stress (Pa) 
τy Yield stress (Pa) 
ξ Vorticity (s-1)

NOTATION
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Animations, 85-88
Applications, 97-130

B
Baffles, 55
Boussinesq hypothesis, 10
Bubble columns, 110-112

C
Cells, computational, 32
Chemical reactions, 19-24, 99-101
Contour plots, 82-83
Convergence criteria, 44
CPU requirements, 129, 132

D
Discretization, 

central differencing, 37
equation, 34-40
grid, 32
power law, 38
QUICK, 38
schemes, 36-39
upwind differencing, 37

E
Equation,

conservation, 6
continuity, 6-8
enthalpy, 18
momentum, 8, 10
RANS, 10
species, 17
transport, 35
turbulence, 12
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F
Fermenters, 103-105
Finite difference method, 40
Finite element method, 41
Finite volume method, 34
Fix option, 49-59 (see impeller models, velocity data)
Flow number, 93
Flows, unsteady, 71
Fluidized beds, 107-110

G
Gas holdup, 104, 109-112
Geometry outline, 78
Graphics, 77-95

animations, 85-88
contours, 82-83
geometry outline, 78
grids, 79
helicity, 90
isosurfaces, 83-84
particle tracks, 84
path lines, 82
rate of deformation, 90-91
stream function, 80-81
streamlines, 80-81
surfaces, 78
vectors, 80
vorticity, 88-90

Grid, 
display, 79
generation, 32
hybrid, 33
quality, 133
structured, 32
unstructured, 33



H
Heat transfer, 17-19
Helicity, 90

I
Impeller models,

actual geometry, 61-76
multiple reference frame (MRF), 62-66
rotating frame, 62
sliding mesh, 67-70
snapshot, 71
velocity data, 49-59, 101-103, 105-107

Impellers, 
anchor, 114-115
boundary conditions, 53
Chemineer BT-6, 122-125
experimental data for, 53
helical ribbon, 125-126
intermeshing, 114-115
Lightnin A310, 65-66
optimization, 122-125
radial, 50
Rushton, 3, 89 

Isosurfaces, 83-84

L
Laminar flow, 115-117, 125-126
LDPE autoclave reactor, 120-122

M
Magnussen model, 20-23
Mesh superposition technique, 112-115
Mixing time, 94
Multiphase flow, 24-28, 57-58, 73

algebraic slip mixture model (ASM), 27 
discrete phase model (DPM), 25, 75, 84
Eulerian granular model, 26, 57, 73, 101-103, 107-110
Eulerian model, 26, 57, 73 
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Multiphase flow, 
gas dispersion, 122-125
VOF model, 25, 56, 72
gas holdup, 104, 107-110

N
Non-Newtonian flow, 28, 105-107, 112-114
Numerical diffusion, 46
Numerical methods, 31

O
Ozone decomposition, 107-110

P
Paper pulp chests, 105-107
Parallel processing, 47
Particle tracks, 84
Path lines, 82
Physical models

geometric impeller models, 71
velocity data model, 56

Power number, 92

R
Rate of deformation, 90-91
Reaction models, 

Magnussen, 20-23
micromixing, 24
PDF, 23

Reaction rate, 
Arrhenius, 21
mixing, 21-22

Reactions, 
chemical 19-24 
LDPE, 120-122
stirred tank, 99-101

Residuals, 43
Reynolds number, 9
Reynolds stresses, 10



S
Shear rate, 28  
SIMPLE algorithm, 42
Solution methods, 41-47
Solution, 

convergence, 43-45, 133
procedures, 68
results, 77-95 (see graphics)
time-dependent, 46, 85

Species blending, 58, 75, 94, 98
Static mixers, 

Chemineer HEV, 118-119
Kenics, 115-117

Stirred tanks, 
blending, 98
LES model, 127-130
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